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Abstract

This paper develops a structural model of endogenous product attribute choice in the
presence of indirect network effects to study electric vehicle (EV) subsidies. Using data
on the German EV market, I find that a support scheme almost doubled EV sales but
substantially distorted the price and driving range of EVs. When designing subsidies,
these distortions create a trade-off between optimizing different policy objectives. Large
purchase subsidies maximize EV sales whereas large charging station subsidies maximize
consumer and total surplus. The results suggest that maximizing EV sales can lead to
unintended consequences in the form of price and range distortions.
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1 Introduction

Road transport accounts for 12% of global greenhouse gas emissions and electric vehicles
(EVs) are considered one of the most promising tools to help decarbonize this sector. As a
consequence, governments worldwide subsidize EV purchases, with total spending amounting
to $15 billion in 2018. To aid the development of EVs, policymakers need to consider two
fundamental issues. First, the driving range of EVs is lower than that of traditional gasoline
or diesel cars, making it an important dimension of quality. Firms can adjust the range rel-
atively easily, meaning they can respond with price and range changes to subsidies. Second,
widespread adoption of EVs requires the development of a network of charging stations whose
value depends on the number of EVs circulating. The presence of these indirect network effects
creates a “chicken-and-egg” problem in which neither side of the market will develop without
the other. In consequence, understanding how price and range decisions of firms interact with
indirect network effects and affect market outcomes is crucial for evaluating EV policies.

This paper provides a framework to study subsidy design in the presence of adjustable prod-
uct attributes and indirect network effects. Doing so is challenging and requires a framework
with two innovative features. First, my framework allows for endogenous choices of both EV
price and range. This is a nontrivial contribution as the current literature studying EV subsidies
abstracts away from modeling range choices and in some cases does not model the car supply
side at all. Modeling price and range choices is important as firms can alter these attributes in
response to subsidies. Second, my framework incorporates indirect network effects and their
interaction with endogenous price and range choices. Doing so is challenging as indirect net-
work effects can lead to electric cars acting as complements, making it attractive for firms to
lower prices to spur charging station entry. On the other hand, firms can increase charging
station entry by providing more range, which raises EV prices. My framework allows me to
evaluate subsidy schemes as it links the price and range effects of subsidies to market outcomes.
I can inform policy discussions and provide answers to questions such as: How do indirect net-
work effects affect price and product attribute decisions of firms? How do subsidies affect EV
prices and range, charging station entry, and policy objectives?

I find that purchase subsidies introduce strong price and range distortions. Important net-
work effects present on the EV demand and the charging station entry side amplify these dis-
tortions. Indirect network effects lower EV markups by around 7% on average. These strategic
supply-side reactions have important implications for subsidy design. Concentrating subsidy
spending on purchase subsidies leads to large EV sales but causes strong price and range dis-
tortions as firms respond by selling cheaper, low-range EVs. Concentrating subsidy spending
on charging station subsidies generates fewer EV sales than purchase subsidies do, but also
causes fewer range distortions and delivers a larger charging station network, which maximizes
consumer and total surplus. As a consequence, policymakers face a trade-off between maximiz-

ing EV sales, maximizing total and consumer surplus, and minimizing CO2 emissions, which



are minimized when spending is distributed between purchase and charging station subsidies.
These findings highlight the importance of modeling price and range adjustments to subsidies.
Doing so is especially important when policymakers want to maximize EV sales, as this can
lead to unintended consequences by distorting price and range.

To answer my research questions, I build a structural model of car demand, car supply, and
charging station entry. The demand side of the model builds on the canonical model of Berry,
Levinsohn, and Pakes| (1995). Consumers choose between differentiated cars of different en-
gine types and exhibit preferences over EV range and the number of public charging stations.
The demand side generates flexible substitution patterns, which are key to evaluating how pur-
chase subsidies affect car choices. I account for the endogenous attributes with instruments
exploiting the competitive environment and variations in charging station subsidies. The car
supply-side builds on the recent literature studying equilibrium outcomes when firms can ad-
just one or more continuous product attributes (Fan, 2013; |(Crawford, Shcherbakov, and Shum,
2019) and extends it to model price and attribute choices when indirect network effects are
present. Firms choose the prices of their cars and the range of their EVs. The charging station
entry side links the number of charging stations to the cumulative EV base and the level of
charging station subsidies. Modeling charging station entry allows me to incorporate indirect
network effects into the car demand and supply model and study how charging station subsidies
affect market outcomes. With this model, I can study how indirect network effects interact with
endogenous price and range decisions and how these decisions affect the policy goals of EV
subsidy programs. I estimate the model using a novel state-level data set of new car purchases
and public charging station entry in Germany.

The substantial indirect network effects I find on both the EV demand and the charging
entry side make own-price elasticities larger in absolute value. Not accounting for indirect
network effects would lead to EV markups that are higher by 8% on average. Indirect network
effects lead to negative cross—price and positive cross—range elasticities, which has important
implications for the price and range choices of EV producers. Negative cross-price elasticities
mean that if a firm lowers the price of their EV, the demand for a competing EV may increase
because the indirect network effects dominate the direct price competition effect. EV sales
would almost double if producers internalized the effect of changing price and range on other
EVs in the market. These higher sales come through a large decrease in price and range. Firms
sell cheaper, lower-range EVs on which they earn a markup that is 17% lower on average.
Charging station entry increases only slightly on the other hand.

I use the model to perform a rich set of counterfactuals. I analyze a German program for
purchase and charging station subsidies whose goal was to substantially increase EV sales.
I find that this program almost doubled EV sales. However, the program caused strong price
and range distortions. The indirect network effects increase these distortions by a small amount.
Unlike in the case of uni-dimensional pass-through to price (Bulow and Pfleiderer, |1983; Stern,

1987; Weyl and Fabinger, 2013)), the direction of the price and range effects is ambiguous and



hence an empirical question. In this case, firms reduced the price and range and sold cheaper,
lower-range EVs on which they collected a lower markup. I then analyze the effects of each part
of the subsidy program individually. I find that removing the charging station subsidy would
decrease EV sales by 22% and charging stations by 46%. Unlike the purchase subsidy, the
charging station subsidy caused only minimal price and range distortions. Removing purchase
subsidies would decrease EV sales by 32% and charging stations by 6%. However, spending
on charging station subsidies was larger in Germany.

I comprehensively analyze subsidy design in the next step by finding combinations of flat
and range—based purchase and charging station subsidies that keep subsidy spending constant
at the 2018 level. Such an exercise is of interest because it shows in detail how strategic reac-
tions of firms to different subsidy schemes affect policy objectives. Also, different countries
use different subsidy schemes, so the exercise can also inform policymakers in designing sub-
sidies. I find that the policymaker faces a trade-off between maximizing EV sales, maximizing
consumer surplus, and minimizing annual CO2 emissions from new cars. Whereas a large flat
purchase subsidy maximizes EV sales at a lower range and prices, consumer and total surplus
are maximized when almost all the budget is spent on charging subsidies. A larger purchase
subsidy coupled with a lower charging subsidy minimizes CO2 emissions from new car sales.
Firms respond to a larger flat purchase subsidy by selling cheaper EVs at a lower range and
respond to lower flat subsidies or larger range—based purchase subsidies by selling more ex-
pensive EVs with a higher range. Overall, purchase subsidies lead to strong price and range
distortions. An increase in the station subsidy induces only small price and range distortions
but still increases EV sales through the indirect network effects. These results have important
implications for policymakers. The results suggest that maximizing EV sales comes at the ex-
pense of a lower range and a smaller charging station network, and therefore at the expense
of maximizing consumer surplus. Policymakers may want to carefully consider the benefits of
increasing EV sales against the range distortion such a strategy causes.

This paper makes several contributions. First, I contribute to the literature on EV poli-
cies by analyzing the role of indirect network effects in the price and range decisions of firms.
This literature has studied the effects of purchase subsidies (Beresteanu and Li, 2011; Mueh-
legger and Rapson, [2022; Xing, Leard, and Li, 2021}, the role of charging stations and in-
direct network effects (Li, Tong, Xing, and Zhou, 2017; |L1, [2023; Springel, 2021} Fournel,
2023)), and other margins such as entry of new EVs (Armitage and Pinter, 2022), usage behav-
ior (Davis, 2019; [Sinyashin, 2021)), and portfolio effects (Johansen and Munk-Nielsen, 2020;
Davis, 2022)E] Jia Barwick, Kwon, and Li (2023) study attribute-based subsidies in China but
do not model the interaction with the charging station side. To the best of my knowledge, this
is the first paper to study strategic price and range responses to subsidies and also to model how
these responses interact with indirect network effects. Doing so allows me to carefully study

strategic reactions by firms to subsidies and how indirect network effects affect these reactions.

'For an overview of this literature, see [Rapson and Muehlegger| (2023)
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Price and range distortions can alter consumer choices and in consequence the effects of sub-
sidy schemes. Second, I contribute to a wider literature studying environmental policies in car
markets by offering a comprehensive evaluation of the economic effects of EV purchase and
charging station subsidies. By studying strategic supply-side responses to subsidy schemes,
I contribute to a strand of this literature that investigates supply-side effects of environmental
policies (Knittel, 2011; Klier and Linn, 2012; Reynaert, 2021;|Leard, Linn, and Springel, 2019).
By comparing different EV subsidy schemes, I contribute to a strand that studies and compares
the effectiveness of different policy tools (Pavan, 2017 |Grigolon, Reynaert, and Verboven,
2018}, Durrmeyer and Samano, 2018). Third, I contribute to two strands of the 1O literature.
First, my paper relates to the literature on attribute provision (Spence, |1975; Sheshinski, [1976;
Mussa and Rosen, 1978} Maskin and Riley, |1984; |Fan, 2013} |Crawford et al.,[2019) that studies
how firms provide a product attribute (quality) in imperfectly competitive markets. Second, the
paper also relates to the pass-through literature (Bulow and Pfleiderer, |1983}; Stern, |1987; Kim|
and Cotterill, 2008} |Weyl and Fabinger, 2013) studying how firms adjust prices in response
to subsidies, taxes, or marginal cost changes. I contribute by bridging a gap between these
two strands in providing a framework that allows for a multi-dimensional response in prices
and product attributes to subsidies, taxes, and marginal cost changes in imperfectly competitive
markets in which network effects are present. In this regard, my paper resembles the approach
of \Gaudin (2022) who provides a theoretical framework for predicting the directions of price
and quality responses to subsidies, taxes, or marginal cost changes. Finally, I contribute to a
recent literature endogenizing product attribute choice (Fan, 2013} Crawford et al., 2019) by
allowing product attribute choices to interact with indirect network effects.

The paper is structured as follows: Section [2] describes the car industry in general and
the EV industry in particular and the data used in the estimation. Section |3| describes the
structural model and Section ] outlines the estimation strategy. Section [5| presents the results
from the structural model, Section [0] presents the results from the counterfactuals, and Section

[7 concludes.

2 Industry Description and Data

The setting for the empirical analysis is the new car market in Germany. A special focus lies
on the electric car market including public charging stations. A predominance of combustion
engine cars using gasoline or diesel as fuel has characterized the German market for new cars
over the past decades. Simultaneously, sales of electric vehicles increased more than twenty-
fold between 2012 and 2018, and the number of charging stations has increased by a factor of

almost 15.
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Figure 1: Lithium-ion cell price estimates (USD per kWh)

Different estimates of lithium-ion cell prices. Source: Hsieh et al.[(2019)

2.1 Industry description

The market for electric vehicles.  After having been dormant for more than 100 years, elec-
tric vehicle technology came back to prominence in the late 1990s. Both the Honda Insight and
the Toyota Prius used a hybrid engine that combined fuel and electric powertrains. However,
it was not possible to plug this electric engine into an external source. Over the past decades,
two new technologies have emerged. One is the plug-in hybrid electric vehicle (PHEV), which
combines a fuel engine with an electric battery pack that can be plugged into an external power
source. The other is a pure battery electric vehicle (BEV), whose powertrain unit consists only
of a battery pack (throughout the remainder of the text, “BEV” is used synonymously with
“battery electric vehicle”, “PHEV” is used synonymously with “plug-in hybrid electric vehi-
cle” and “EV” means both “BEV” and “PHEV”). Electric vehicles have been singled out by
policymakers and firms alike as key technologies to decarbonize the transportation sector in
pursuit of the goal to contain the rise of global temperatures to below 1.5°C. To buttress dif-
fusion, governments around the world have introduced subsidies and tax incentives for electric
vehicles. The scope and design of these subsidies vary considerably across and sometimes
even within countries. Some countries use flat subsidies, and others make subsidies depend on
characteristics such as the driving range or battery size Global government spending on EVs
increased substantially from $1 billion in 2012 to $15 billion in 2018.

Another feature of the electric vehicle market is the rapid decrease in the cost of lithium-ion
cells (LICs). Numerous LICs make up the battery pack of an electric vehicle. This battery pack
propels the car, and its size is the most important determinant of the driving range. Figure ]|
shows different approximations of the evolution of lithium-ion cell prices. Although there is
considerable variation in the estimates, there is a clear downward trend. This trend suggests

that providing driving range has become considerably cheaper over the past decade.

2For detailed overviews, see Yang, Slowik, Lutsey, and Searle|(2016) and Rokadiya and Yang|(2019).



Significant barriers to the mass adoption of electric vehicles exist: EVs tend to be more
expensive and have a shorter driving range than combustion engine cars. In consumer surveys,
the high cost and small range of EVs repeatedly show up as the most critical determinants
of whether to purchase an electric vehicle, together with the charging station network density
(see, for instance, Schoettle and Sivak 2018} |Carley, Krause, Lane, and Graham 2013;|Rezvani,
Jansson, and Bodin/ 2015). Both the low range and the low charging station network density

contribute to a low perceived quality of EVs and low autonomy.

Electric vehicles in Germany. The automobile sector is a key industry in Germany, account-
ing for 9.8% of gross value added and employing approximately 880,000 people, with another
900,000 jobs heavily depending on the sector, for a combined share of 7.2% of total employ-
mentE] Germany is home to three of the largest 15 car manufacturers in the world as measured
in sales and was ranked fourth in the world in terms of motor vehicle production during the
sample period.

Over the past decade, the German government has implemented measures to boost sales
of electric vehicles. One such measure was the Government Program for Electric Mobility of
2016. Part of this program was a support scheme that gave a subsidy of € 2,000 for the purchase
of battery electric vehicles and a subsidy of € 1,500 for the purchase of plug-in hybrid electric
vehicles. The car had to have a list price below € 60,000 to be eligible for the subsidyﬂ In
total, the government provided € 600 million in subsidiesE] The program also provided a total
of €200 million in funding for new charging stations, starting in 2017. The amount of the
subsidy depended on the type of charging stations. Charging stations with a charging capacity
of up to 22 kW (also called Level 2 chargers) received up to € 3,000 for installation and € 5,000
for connection to the electricity grid (if the charging point was connected to the medium-voltage
grid the connection subsidy was up to € 50,000). Level 2 chargers are the dominant type of
charger in my sample, representing almost 87% of all public chargers at the end of 2021. Table
in Appendix |A| gives an overview over the number and type of chargers available by year.

The plan reinforced the government’s goal to have 1 million electric cars on the streets
by 2020 and 6 million by 2030@ The budget for the EV purchase subsidies was forecast to
be sufficient to give subsidies until 2019. However, by June 2017, only approximately 5% of
the total budget had been used, and in 2018, the market share of battery electric vehicles was

3https://www.iwkoeln.de/en/studies/iw-reports/beitrag/thomas—-puls-manue
l-fritsch-the-importance-of-the-automotive-industry-for-germany.html

*Such maximum price provisions are quite common and are or were used in France, the UK, and the Nether-
lands, for instance (see http://tinyurl.com/ydmnyc82, http://tinyurl.com/y7a57zxm, and
http://tinyurl.com/4jbyudxj). In the structural model, I ignore this maximum price. Only two models
cross it in some of the counterfactuals, which does not affect the main results of the paper.

3Car manufacturers pledged to match the government subsidy by granting a rebate equal to the amount of the
subsidy. The program also provided various tax benefits for buying, using, and charging electric vehicles. See
alsohttps://www.bmwi.de/Redaktion/EN/Artikel/Industry/regulatory—environment
—and-incentives-for-using-electric-vehicles.html

https://www.bmwi.de/Redaktion/DE/Downloads/P-R/regierungsprogramm—elekt
romobilitaet-mai-2011.pdf?__blob=publicationFile&v=6
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only at 1.2%, with approximately 34,000 annual car sales. These lackluster sales numbers led
the government to increase the subsidy scheme’s scope as part of a federal climate protection
act in 2019. This act increased the government subsidy for battery electric vehicles to up to
€ 3,000, depending on the list price. The act also increased tax incentives for electric vehicles
and introduced a price of € 10 per ton on CO, from 2021 onward, which has since increased to
€ 30 per ton on COs. In total, the government pledged € 9 billion for subsidies, tax reductions,
and charging infrastructure. Finally, in response to the economic crisis caused by the COVID-
19 pandemic, the government doubled the subsidies to € 6,000.

At the same time, individual federal states also introduced support for e-mobility. In par-
ticular, many states introduced support schemes for charging stations. These support schemes
are often similar in design the one implemented by the federal government. However, the state
schemes differ both in the size of financial incentives and their introduction date.

The market for public chargers is very fragmented, with the 5 largest firms combined own-
ing only 16.8% of charging points in 2021, and the 10 largest firms owning 26% of charging
points in 2021. Overall, some 3,300 firms and municipalities own charging points. Concentra-
tion is somewhat higher at the state level, as the largest firms tend to focus on specific areas of
Germany. Until 2018 included, car makers were practically absent from the charging station
side[] As of 2021, only Volkswagen has started to build some charging stations, albeit at a very
low level and mostly around their factories. Another carmaker initiative is Ionity, a firm jointly
owned by several carmakers (VW, BMW, Daimler, Ford) with the goal of deploying a network
of chargers along European freeways. However, at the end of 2021, Ionity provided only 0.77%
of all charging points.

A distinguishing feature of EVs compared to conventional cars is the possibility to charge
the battery at home. Studies suggest that 49%-80% of charging in Germany occurs at home
and 8%-25% at public chargers (see for instance |Preul3, Kunze, Zwirnmann, Meier, Plotz, and
Wietschel, 2021). These figures suggest that public chargers satisfy an important amount of
demand for charging. Moreover, public chargers are crucial in incentivizing EV uptake among
consumers who do not have access to home charging. In that sense, more public charging
station entry can induce latent demand of consumers who did not previously consider buying
an EV.

2.2 Data

I build a comprehensive data set of new car purchases in Germany from 2012 to 2018 and
of charging station entry in Germany from 2012 to 2021. I do so by combining several data

sources.

"The obvious exception is Tesla, which rolls out its own network. However, throughout the sample period,
Tesla’s chargers were not available to EVs of other manufacturers, which is why Tesla chargers are not included
in the analysis.



Car registrations. I use publicly available data from the German Federal Motor Transport
Authority (KBA). This data set contains yearly new registrations at the state level for every car
modelﬂ A firm-and-trim identifier (“HSN/TSN”) defined at a very granular level identifies a
model. It differs by car class, body type, engine type, kilowatts, weight, and the number of
doors. I follow the previous literature on demand estimation for car markets in treating new

registrations as sales.

Car prices and characteristics. I scraped data on car prices and characteristics from the
website of the General German Automobile Club (ADAC), giving me a comprehensive data set
containing a wide range of car characteristics. These characteristics include the driving range
of cars. The data also include the list price of cars, which I use in the estimation as the trans-
action price, again following the literature on demand estimation for car markets. The ADAC
data also contain the HSN/TSN identifier, allowing me to match the two data sets relatively

easily, except for some observations requiring manual matching.

EV charging stations. I obtain the number of charging stations for electric car batteries
from a publicly available data set listing all public charging stations from the Federal Network
Agency (BNetzA)ﬂ The data set contains each station’s opening date and its location. The data
also gives information on the type of charging station (capacity in kW and the type of grid

connection).

Suppliers. I use data on manufacturer-supplier links from MarkLines. This data allows me
to identify the country where a given model is produced and the identity and location of every
EV’s battery supplier. The MarkLines data also contains model-level sales in every European

country.

Further data. I use data from the German Socio-Economic Panel (SOEP) to build income
distributions at the state-year level. To do so, I fit the mean and variance of a log-normal distri-
bution using the observed household income draws of the SOEP. Additional data on population
comes from the Federal Statistics Office, and CPI data are from Federal Reserve Economic
Data. To have a measure of usage cost of different cars, I build a measure of fuel cost in € /100
km using yearly average gas price data from ADAC and electricity cost data from the German
Economics Ministry. In addition, I also collect information on the number of gas stations and
their prices using data published by tankerkoenig.de. This data is only available from the end
of 2014 onward, which is why I only use it on the charging entry side and not in the demand

estimation.

The resulting data set defines a product at a very detailed level. A trade-off exists between hav-

8Germany consists of 16 states (“Bundeslinder”). Three of these states (Berlin, Hamburg, and Bremen) are
“city-states” whose boundaries coincide with the cities themselves. The other 13 states are larger in area, ranging
from approximately the land area of Rhode Island to approximately that of South Carolina. The population of the
16 states ranges from approximately 680,000 (roughly comparable to that of Alaska) to approximately 18 million
(roughly comparable to that of New York state).

°In the remainder of the paper, I will use “’public charging stations” and “charging stations” interchangeably.
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Figure 2: Evolution of price and range of battery electric vehicles

This figure shows the average price and range per year relative to 2012 values that are normalized to 1.

ing a very granular product definition and a more aggregated definition for tractability. In my
final data set, I define a product at the firm/model/engine type level, with the possible engine
types being combustion (ICE), plug-in hybrid (PHEV), or battery electric (BEV) engines (e.g.,
VW Golf ICE vs. Renault Zoe BEV). In aggregating up to this product definition, I use the
price and characteristics of the most frequently sold variant at the national level. I reduce the
size of the data further by leaving out firms and models with low sales. In addition, I delete
models with a nominal list price above EUR 100,000. I set the size of the potential market
equal to the number of households in a given state in a given year. In total, the data consist of
28,288 year-state-product observations. Detailed summary statistics can be found in Table [9) of
Appendix A.

Figure 2| shows how the average price and range of battery electric vehicles developed
during the sample period. Prices slightly increased, and the range rose by almost 60%. Both
the entry of new cars with higher range and range upgrades of existing cars contributed to this
increase in range (see also Figures[6]and [7/in Appendix [B). It is unclear from Figure 2] to what
extent falling LIC prices and subsidies drove these trends. The structural model will allow me

do disentangle these effects.

2.3 Reduced-form evidence

To get a first idea of whether prices and range do adjust to subsidies, I present some reduced-
form evidence. For this, I extend the data set of BEV prices and characteristics to 2020 in-
cluded. Doing so has two advantages: First, it provides me with 2 more years of data in which
more BEVs entered or got upgraded. Second, it allows me to exploit an increase in the purchase
subsidy in late 2019. The subsidy increased to €3,000 for BEVs with a list price of less than
€40,000 and to €2,500 for BEVs with a list price between €40,000 and €65,000. I regress
the driving range and price of all BEVs in the sample on the amount of the subsidy the BEV

10



qualifies for, car characteristics, and different levels of fixed effects.

The results are in Table[I] I estimate a negative impact of the subsidy on both price and
range. The results are relatively robust across the different specifications for both price and
range. They suggest two effects: First, price pass-through seems to be more than 100%. The
results in the last column suggest that a €1,000 subsidy increase is associated with a €5,000
price reduction. Second, firms seem to reduce the driving range of cars when subsidies increase.
The last column suggests that a €1,000 subsidy increase is associated with an almost 66km
decrease in the range. Caution should be taken with claiming causality here. These subsidies
were introduced at a time of rapidly declining battery costs and subsidized cars compete with
non-subsidized cars, making it difficult to define a proper control group. Moreover, the public
charging network expanded rapidly over the time period, which likely affected and interacted
with firm strategies. Disentangling the effect of subsidies from these other factors requires a

structural model.

Table 1: Reduced-form results

Dependent Variable: Range

Subsidy -46.40*  -47.34*%**  -38.82%**  -60.22***  -65.88***
(23.81) (8.044) (12.01) (17.76) (18.69)

R? 0.81496 0.95006 0.88615 0.95554 0.97124

Dependent Variable: Price

Subsidy -2.371 -0.7370 -2.372%* -4.223%F% 5204 **
(2.278) (1.050) (1.022) (1.203) (1.021)

R2 0.96783 0.98299 0.96818 0.98599 0.99197

Further controls Yes Yes

Year FE Yes Yes Yes Yes Yes

Firm FE Yes Yes

Model FE Yes Yes

Body FE Yes Yes

Class FE Yes Yes

Product FE Yes

Observations 152 152 152 152 152

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

3 Empirical Model

3.1 Set-up

This section introduces a structural model of demand and supply for new cars and entry of
public electric charging stations. The demand side builds on the canonical model of Berry et al.
(1995) (BLP henceforth). The supply side builds on Fan|(2013) and Crawford et al.|(2019). and
expands these frameworks by allowing indirect network effects to affect firm decisions. The
charging entry side builds on|Bresnahan and Reiss| (1991)); Gandal, Kende, and Rob|(2000) and

Springel| (2021). I need a model that generates realistic substitution patterns between electric
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cars and combustion cars on the demand side where consumer preferences for the number of
charging stations generate indirect network effects. On the car supply side, I need to explain
how firms choose price and range taking into account the indirect network effects in a multi-
product oligopoly setting. The model also needs to allow me to study the impact of subsidies
and marginal cost changes in imperfectly competitive markets when firms choose the price and
a product attribute. On the charging station side, I need a framework that links the number of
charging stations to the cumulative EV base and the level of subsidies.

Consumers choose the product maximizing their indirect utility and exhibit heterogeneous
preferences over prices and product characteristics on the demand side. The supply side allows
firms to compete in terms of price and range. 1 assume that consumers care only about the
driving range of battery and plug-in hybrid electric vehicles and not about the driving range
of combustion engine cars. Likewise, I assume consumers only care about the electric charg-
ing station network and not about the availability of gas stations. These assumptions mirror
evidence from consumer surveys on purchase behavior and consumer preferences regarding
battery electric vehicles. Several consumer surveys have found that driving range, price, and
charging station availability are the most critical consideration in the purchase of an electric
vehicleEj] Additionally, the driving range of combustion engine cars is sufficiently high, and
the network of gas stations is sufficiently dense. Hence, these attributes do not play a role in
consumer purchase decisions or firms’ profit maximization problems.

I further assume that firms choose prices and range simultaneously at the national level.
The rationale behind this assumption is that a firm can alter the driving range even after it has
fixed other characteristics, such as the car’s size dimensions. A battery pack is made up of
many lithium-ion cells, giving firms the flexibility to scale the battery pack’s size up or down.
Over the sample period, battery density also increased, meaning that firms could increase range
simply by installing more recent cells without increasing the battery pack size. I also assume
that firms choose price and range at the national level because list prices and characteristics do
not vary across states. Finally, I assume that firms only choose the range of their BEVs. This
assumption is partly a consequence of the fact that I assume consumers do not have preferences
on the range of combustion engine cars. In addition, I assume that firms do not choose the range
of plug-in hybrid electric vehicles. I do so, first, because the range of PHEVs did not change
much over the sample period and, second, because the technology involved is different I
do not allow for fixed costs in adjusting range. The range decisions modeled here are short-

term adjustments once the other attributes have been chosen. These adjustments will be mainly

10See, for instance, [https://www.compromisorse.com/upload/noticias/002/2794/accen
tureelectricvehicle.pdf, Specifically for Germany, see https://www.aral.de/content/da
m/aral/business—-sites/de/global/retail/presse/broschueren/aral-studie—-trend
s—-beim-autokauf-2019.pdf, The latter study (in German) also shows that consumers do not take range
into account when deciding on the purchase of a combustion engine car.

"'The battery of a PHEV needs to work in conjunction with a combustion engine. This setup means that on
the one hand, there is less need to increase the range since the combustion engine provides enough range. On the
other hand, it is also more difficult to increase the range, given that there are more space constraints.
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reflected in marginal cost, such as the usage of more battery cells per car or the usage of denser,
more expensive cells per car.

There are several reasons suggesting that firms adjust range frequently and in response to
policy changes in the German market. First, the reduced-form evidence in Section [2.3|suggests
that range is adjusted in response to subsidies. This evidence is in line with findings in other
countries. Jia Barwick et al. (2023) show that in response to a range-based subsidy, firms
adjusted their driving range by bunching around cut-offs present in the Chinese subsidy scheme
at the time.

Second, as described above, range is relatively easy to adjust in the short run compared to
attributes such as the size of the car, which is typically fixed over a 7 to 8 year horizon. Figure
in Appendix [Bfshows the evolution of range for selected models in my data. We can see that
range is adjusted frequently by firms. I also report other attributes. We can see that both the
footprint, the height, and the horsepower of BEVs stayed constant for most models or changed
at most once. Quotes from industry executives and news articles on EVs corroborate this. In a
2016 investor call, in response to a question pointing to BMW only introducing their next new
EV in 2020, then-CEO Harald Kriiger noted “What we do in between, (...), we’re increasing
the battery capacity of the 13 which will have then 50% more model range (...) and we’re still
working in the future on more.’ A news article from 2017 talking about a range increase
of Volkswagen’s e-Golf describes the source of the range update: “Improved battery cells will
allow Volkswagen to fit more powerful batteries into the same physical space occupied by the
current batteries.

Third, manufacturers tailor EVs to specific markets. In 2021, then Volkswagen CEO Her-
bert Diess announced “Volkswagen is bringing a wide range of highly attractive BEVs tailored
to the U.S. market (...)”E] In an investor call in 2019, VW Director of Group Sales Chris-
tian Dahlheim noted ‘(...) that most models are country speciﬁc.’ In 2018, the Mitsubishi
Outlander got a range upgrade in Europe which was introduced in the US only 3 years laterm
While this tailoring seems to be mostly done at the European level, it is reasonable to expect that
the German market plays a crucial role in tailoring cars to the European market: Throughout
the sample, Germany was the largest market for cars in Europe and the fourth largest world-
wide in terms of new car sales. Table|15|in Appendix |A|compares sales numbers of EVs across
European countries in 2018. We can see that for most models, Germany was one of the three
most important markets and accounted for a substantial share of European sales. Overall, these
reasons motivate my choice of firms strategically setting price and range in response to German

demand and policies.

12Bayerische Motoren Werke AG (BAMXY) on Q1 2016 Results - Earnings Call Transcript

Bhttps://www.motortrend.com/news/volkswagen—e-golf-to—get—-30-percent—dri
ving-range—improvement/

*Volkswagen Media information No. 123/2021

SVolkswagen AG ADR (VWAGY) Management on Q3 2019 Results - Earnings Call Transcript

Onttps://insideevs.com/news/394837/mitsubishi-expected-to-update-outland
er—phev-us/
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On the charging station side, I assume that charging stations play a complete-information
entry game in which they trade off sunk entry costs against future discounted profit streams.
These entry costs and profit streams depend on the cumulative EV base and the amount of
charging station subsidies, linking both to the amount of charging station entry. One assumption
I make on the charging station side is that charging stations are symmetric and end up with
identical market shares. Whereas different types of charging stations do exist (slow vs fast), the
vast majority of charging stations built over the sample period were relatively similar in their

charging speed.

Timing. I assume that each period starts with a given number of EVs circulating. The
game then proceeds with car makers choosing the price and range. Consumers then make their
purchase decisions and charging stations enter. The main implication of this timing assumption
is that it makes the indirect network effects explicit in the price and range decisions of electric
car producers. An alternative way of modeling this game would be to assume car makers
and charging stations move simultaneously. In such a set-up, the indirect network effects are
no longer explicit in the price and range choices but will still be present when performing
counterfactual analyses. I will return to this point when discussing the counterfactuals.

The model is static. Using a dynamic specification would make the model richer and enable
me to study the chicken-and-egg problem between EV adoption and charging station entry in
more detail. Doing so is infeasible mainly for data reasons, however. Carmakers tend to update
their models every 7-8 years. I do not have the data necessary to look at these kinds of long-
term decisions. Likewise, consumers tend to use a vehicle for 5-6 years. Hence, estimating
a dynamic model requires a very long panel. Finally, given the importance of cars for many
consumers, it is unlikely that consumers defer car purchases in expectation of future events
but rather choose a different option. My model still captures the main channel through which
the chicken-and-egg problem manifests itself on the demand side since I model substitution
between EVs and other cars. Doing so requires taking account of endogenous price and range
choices as well as their interaction with indirect network effects and is already challenging.

Adding dynamics on top of these challenges is beyond the scope of this paper.

3.2 Car demand

A state m observed in year ¢ defines a market. There are M,,,; consumers in each market mt.
Each consumer ¢ chooses one option j, which is either the outside option ;7 = 0 or one of
the j = 1,..., J differentiated products. Choosing the outside option means that the consumer
buys a used car or does not buy a car at all. Choosing one of the “inside” products means buying

a new car. The utility that consumer ¢ enjoys from purchasing one of the products j = 1,...,J
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is

Uijm = 3 BEV) + B PHEV; + Birj + B*log(djm)
onl;/TEVs

+ xjmtﬂ;v + Sjmt + Eijmt, (1)

J/

Djt

Yimt

TV
all cars

where BEV; (PHEV)) is an indicator equal to one if the product is a BEV (PHEV), rj; is
the range of product j, dj,, is the number of charging stations available in state m in year
t, pji 1S its price, Y 1s the income of consumer %, and x;,,; is a vector of observed product
characteristics. {;,,+ is an unobserved characteristic of product j in market mt, and €;;,,, is a
consumer-specific unobserved taste shock assumed to be an i.i.d. type-I extreme value. The
parameter vector /37 consists of mean tastes for characteristics and, for some characteristics,
random coefficients capturing unobserved heterogeneity in the valuation of product character-
istics. For a characteristic k, we have 87 = ¥+ o*1/F with 1} drawn randomly from a standard
normal distribution and o* being the standard deviation of preferences. The parameter 3" cap-
tures preferences for range, 3% captures preferences for the size of the charging network, and «
captures price sensitivity. Remember that consumers only care about the range of electric ve-
hicles. In the model, this translates into setting 7;; = 0 for products with a combustion engine.
Likewise, log(djm:) is zero if j is a combustion car. The utility from purchasing the outside
option is normalized to w;p;: = Eiomt. Note that I do not interact range and the number of
charging stations. There are two reasons for this choice. First, it is challenging to identify an
additional endogenous variable on the demand side. Second, I consider the earliest stage of the
EV market, where substitutability of range and charging stations played a small role given both
range levels and the number of charging stations were very low.

Consumer ¢ in market mt chooses alternative 7 = 0, ... J that maximizes her utility. Each
consumer is characterized by her income y; and her vector of idiosyncratic preferences v;. In-
come y; follows a log-normal distribution whose parameters I estimate based on draws from
the observed income distribution. Remember that €;;,,,; follows a type-I extreme value distri-
bution. This assumption enables me to derive the probability that product ; yields the highest
utility across all possible alternatives by integrating over the individual-specific valuations for

characteristics:

Sjmtpvrdxga )_

/ / eXp jmt + ,uzjmt(pjta T]tv d]mt7 xjmtv £]mt7 )) dF(l/)dG(y)
1+ Zk 1 exXP(Opmt + Mikme (Pkt> Thts Akmts Thme, Semt; O

where F(-) is the joint CDF of the unobserved taste shocks and G(-) is the distribution of

income. Further, §;,,,; is the mean utility incorporating all terms from (I)) that do not vary

across individuals, and pijmy = —a = + 37, o*vfaf,, captures individual deviations from
m
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the mean utility. Finally, defining the observed market share as s;,,; = Xﬁl’”t with gj,,,+ being

the observed quantity of product j in market mt, and stacking observed and predicted market

shares into a vector, we obtain the system of equations s,,; = sn:(p,r,d, x,&; o) for each

market mft.

3.3 Car supply

I model the profit-maximizing price and range decisions of F' multi-product firms for each year
t. I assume the product portfolio of firms to be given and that firms have already chosen all
product characteristics except for the range of BEVs. Firms then maximize profits by setting
the price of all products in their portfolio as well as setting the range of their BEVs at the
national level. Firms take into account indirect network effects, which accrue to both BEVs
and PHEVs. I will defer the analysis of the role indirect network effects play in firm decisions
to after the introduction of the charging station entry side.

The profit in year ¢ is then the weighted sum of profits from each state m, and firm f’s profit

maximization problem can be written as follows:

MaxX 7y = Z (pjt — mcji(rje, Wit; 95))5jmt<pu r,d,x, & o) M, 2)

b,r A
JET st

where Jy; is the product portfolio of firm f, mc(-) is the marginal cost of product j, w; is
a vector of observed cost-shifters and 6, is a vector of parameters entering the marginal cost

function. The first-order conditions with respect to price and range are then given by

aﬂ-ft E askmt o

opje (bmt{sﬂm“ +ke§Jf:t Prt — MCry) Dy }— 0 (3)
0T 44 Z 8mcjt Oskmi |

orjys ¢mt{ rit o Simt "‘kgjﬁ Drt — MCht) rs }— 0, 4)

where ¢,,; = % is the weight of state m. Equation (3)) is the usual first—order condition

with respect to price, where firm f trades off increasing the markup on product j by increasing
the price against losing market share due to this price increase, adjusted by the effect of chang-
ing 7’s price on the demand of other products that firm f offers. Equation (4)) is the first—order

condition with respect to range which we can rewrite as

amc]t ]mt aSkmt -
E Oty — Sjmt + (pjt - mc]t + E pkt — kat) or =0
N v N Jt k'#] kejft jt
Change in markup X Markup x change > ~

market share in market share Cannibalization effect
on other products

J/

When choosing the range, firm f trades off the decrease in the markup from providing more

range (intensive margin) against the higher demand arising from this range increase (exten-
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sive/switching margin) as well as the cannibalization effect on the other products in firm f’s
portfolio. Loosely speaking, equilibrium range decreases with a higher marginal cost of range
increases (which squeezes the markup) and increases with larger values of the demand semi-
elasticity with respect to range (which increases the extensive margin).

The first-order conditions in and (@) can be expressed in matrix form. I use the index
B for battery electric vehicles and / for other vehicles. I let 75z, J; denote the set of either
type of vehicle and Jg, J; the number of either kind of vehicle on the market. I then define the

following matrices:

> Gt i ki, 1 € T

0 otherwise

A, JxJ matrix with entry £, =

Y Gt if k1€ Jyand k.1 € Ty

0 otherwise

Af : JpxJp matrix with entry k,[ =

S Bt if ke Jp, 1€ Jrand k € Tp

87‘“

Al Jpx.J; matrix with entry k,[ =
0 otherwise

The system of first-order conditions can then be expressed as

s+ (p—mc)A, =0 (5)
omc”
B s? + AP(p? — mc?) + Al(p’ — mc’) =0, (6)

where s is the vector of market shares, p is the vector of prices, mc is the vector of marginal

costs and r is the vector of range levels.

Marginal cost specification

I specify a marginal cost function that is log-linear. For product j, it is given by

log(meji(gie, wie; 05)) = wieth + wje + (Yo + 71t + 050) 751, (7)
-~ 7 A\ - v}
baseline marginal cost of
marginal cost providing range

where wj; is a vector of observed cost-shifters, w;; is a cost shock observed by firms but un-
observed by the researcher, ? is a linear time trend, 7);; is a range-specific marginal cost shock
observed by firms but unobserved by the researcher, and 6, = (1, v, 71) is a vector of param-
eters to be estimated. Note that the second part of (/) is zero for products that are not battery
electric vehicles since I do not model their range choices. In the case of BEVs, I assume that
the marginal cost of providing range depends on an intercept term, a linear time trend allowing
for less costly range provision over time, and an unobserved, product-specific component. The

exponential nature of fixed costs is in line with the technology facing firms: Increasing range
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may be achieved by increasing the size of the battery. A kilometer of range becomes more
costly at higher range levels. One reason is that the car’s dimensions restrict the size of the
battery. Additionally, other ways of increasing range, such as achieving a higher energy den-
sity of batteries, may also be constrained by technological factors and make provision of range
costlier at higher range levels.

Having a functional form for marginal costs allows me to express the equilibrium levels
of price and range in matrix form. Let co = w9 + w and ¢; = (7 + 71t + 1). Then, the

equilibrium price and range are

p:mc—i-A;IS (&)
1 AB (B — meB) + Al(p! — me!

r:_log< r (p” —mc )B+ +(p’ —mc )) S ©
Ci svcy C1

We obtain the usual result of the price being equal to marginal cost plus a markup. The expres-
sion for range again makes apparent the trade-off in an increase in market share, cannibalization
of other products, and a decrease in the margin or vice versa.

Subsidies in the supply model

The supply model above can accommodate subsidies such as that introduced in Germany in
2016. Let pj; be the price paid by consumers and Aj; the subsidy. Then, the price received by

firms is p;; + Aj;. The profit maximization problem of firm f then becomes

mMax mp =
p7r

Z (Pt + At = mes (e, wje; 04)) e (D, 7, d, 2, 6 0) Mo, (10)

JEJ st

and the system of first-order conditions is now given by

s+(p+A—mec)A, =0 (11)
omc” B B/. B B B N I I
- +A(p"+ A" —mc”)+ A (p+ A —mc) =0, (12)

where A is the vector of subsidies. Expression (10)) also makes apparent that the introduction

of a (flat) subsidy is equivalent to a marginal cost decrease of the firm.

3.4 Charging station entry

The exposition of this section closely follows [Springel (2021)). For more details, refer to her
exposition of the model. The main difference between her framework and mine is that I model a
car supply side with endogenous price and range choices in which I explicitly take into account

the effect of indirect network effects on price and range decisions.
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Let h be one of d,,,; stations in state m in year ¢. A station h enjoys per-consumer profits

Dhmt (pimt ’ pi hmt» dmt) (pzmt - C?nnt) )

where Dj,,,,; is the per-consumer demand for station h, pj, . is the price station h charges and
Cjme 18 the marginal cost of station h I assume stations have perfect foresight. Following
Bresnahan and Reiss| (1991)); Gandal et al.| (2000), and |Springel (2021)), I assume that 1) per-
consumer demand functions are symmetric, ii) each charging point faces the same marginal
and sunk entry costs and iii) each station h gains an equal share of the market. Under these
assumptions, an equilibrium exists in which each station charges the same price and we can
express the period—t profits upon entry

ot = QEV D(Z?e(dm;))(pe - 06)7

mt

-

Eﬁ(dmt)

(13)

where QY denotes the stock of electric vehicles circulating in state m in year tm Following
the previous literature, I assume the equilibrium price to be a decreasing function of the number
of stations. A station deciding to enter in year ¢ incurs a sunk cost of entry F;,,; and then earns

a sequence of yearly profits

— Lt + P41 + pzﬂm7t+2 + . (14)

with p the discount rate. Stations must be indifferent between entering in period ¢ or in period

t + 1 in a free-entry equilibrium, implying

— L'yt + PTm,t+1 + p27Tm,t+2 + ... (15)
= —pFpii1 + 0 Tmpr2 + PP Tompss + ... (16)

Coupled with equations (I3) and (I5)), and taking the natural logarithm, yields the following

equation:

log(¥(dme)) = —log(p) —log(QLY) +1og (Funt — pFnir1) (17)

Letting ¥(d,,;) = (kd,,;)" and assuming that log (Fmt — me,t-i-l) is a linear function of national

and state charging station subsidies, a linear time trend and state demographics (respectively

17T add the superscript e to avoid confusion with car prices and marginal costs.

18Since I have only information on the BEV stock, I set the initial EV stock equal to the initial BEV stock on
January 1 2012. I calculate the stock in year t as stock; = newsales; + stocky_1 + scrappage;—1. 1 only have
information on BEV scrappage, which was around 10% of the stock every year. Accordingly, I assume total EV
scrappage to be 10% each year. The results are robust to assuming no scrappage as well as assuming a larger
initial stock to account for PHEVs bought before 2012.
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fixed effects), I obtain the following estimating equation:

10g(dymy) = v1 + vy log(QEY) 4 vsNational Subsidies,,; + v4State Subsidies, .
+ vs0t + Imt’Uﬁ + € (18)

3.5 Firm choices and indirect network effects

The assumed timing of the game modifies the first-order conditions of firms. In particular,
market share derivatives with respect to price and range change as firms anticipate the effect
of their actions on the charging station side. Analyzing the role of indirect network effects
in firms’ price and range choices requires some further notation. Let the partial derivative of
model k’s share with respect to model j’s price absent network effects (i.e. 5” = 0 or \; = 0)

be given by

J [ =551 = si3)dF (v)dG(y) if k = j
J [ —sisandF (v)dG(y) otherwise

Ny =

and the station semi-elasticity absent indirect network effects (i.e. vo = 0) be given by

V= ﬁd//sj(l — 5;)dF(v)dG(y).

Let JEV denote the set of EVs present in the market. Note that I suppress the dependence of
market shares on attributes, prices, and parameters as well as market- and time subscripts for
notational convenience. From Springel (2021)), we know that we can then express the partial

derivative of the EV market share (denoted s”"") with respect to the price of product j as

B Z e + vy O0stV _ ZkejEV Mkj
’ 1- sE‘V ZkejEV Tk

The partial derivative of product j’s share with respect to its price is then given by

Jsj ds; 0OlogddQ*Y
ap; T 9logd QEV ap,
D ke v ki

= 1;; T V27
sV — w0y 3 mv W
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where d denotes the number of charging stationsE’T] We can also express this partial derivative

in the following way:

0s; V27 V2,
o = M Ny + ) ki (19)
Op; P SEY — g 3 v kzﬁ TSEV — w0y 37 ey W

N

s

TV
indirect network effects

TV
related to own share indirect network effects

related to rival shares

Assuming that sV — vy >, v > 0| we can directly see two opposing forces acting on the
augmented partial derivative: On the one hand, the network effect directly related to the own-
product market share makes %'_ more negative, because raising the price reduces sales of the
own product, resulting in lower charging stations, which in turn lowers sales further. This gives
the firm fewer incentives to increase prices. On the other hand, the network effect related to
rival product market shares makes % less negative, because raising the price will increase
rival-product sales, which increases the number of charging stations and in turn leads to higher
own sales. This effect gives the firm more incentives to increase prices. Since we would expect
Njj > D _kxzj Tkj» indirect network effects will make % and as a consequence also the own-price
elasticity more negative.

We can similarly derive the cross-price derivatives, which become

ds; L Os
ope TS gy,
ZZEJEV Nk

= 1Nk + V27 SEV (20)

S S

. . 9s.; . .
Since cars are substitutes, we have 7, > 0. If n;; > >, . m; and ap,» CrOSs-price derivatives
will become less positive or even negative, in which case EVs will act as complements.

Analogously, we can derive the own-and cross-range derivatives. The effects will be a
mirror case of the analysis on price derivatives above. Let the partial derivative of model £’s

share with respect to model j’s range absent network effects be given by

[ [ =Bisi(1 = si;)dF (v)dG(y) if k = j

Mj =
’ [ [ —BsijsidF(v)dG(y) otherwise

The partial derivative of the EV market share (denoted s"') with respect to the price of product

Note that I shut down possible dynamic considerations here: Setting a lower price today may lead to more
charging stations in the next period since the stock of EVs will be larger. By shutting down this demand-enhancing
effect, I may underestimate the incentives to charge a lower price, so the effects found can be thought of as a lower
bound. Writing down the full dynamic pricing problem in a multi-product oligopoly setting with complementary
charging station entry is beyond the scope of this paper and left to future research.

20This will hold if the size of the indirect network effects is “small enough” relative to the size of the EV market.
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J is given by

9sFV _ Z o+ vy Os”V Z e = 2 ke =V ks
or; b SB o,y ST S

keJEV ke JEV

The partial derivative of product j’s share with respect to product k’s range is then

(%j ZkejEV T/ZJ

ke itk =,
or; M T 0y e !
0s; 2 iegev M

i R itk

a’f’k 773k 275 gBV _ Uy ZlejEV v 7é J

Since increasing the range increases the own-product market share, indirect network effects
will make the own-range derivative larger. Since increasing the range absent indirect network
effects decreases rival EV shares, indirect network effects will become less negative or even
positive, in which case EVs will act as complements.

These modified first order conditions affect price and range choices: Equations (11) and
(12) pin down optimal price and range levels in the presence of subsidies. The subsidy will
distort both price and range since both are a function of the subsidy in equilibrium. The optimal
price and range levels also a function of the indirect network effects as they depend on the
(modified) price-and range derivatives. The matrices A, and AZ hold these price- and range

derivatives, respectively.

4 Estimation

4.1 Instrumental variables

Estimation of the demand side parameters suffers from the well-known endogeneity issue re-
lated to price and here also to range: As the demand- and supply-side shocks realize before
the price and range choices, price and range may be correlated with these unobservables. The
utility function also includes the number of charging stations available to electric vehicles. The
charging station network is itself likely to depend on the electric vehicle base, creating an en-
dogeneity issue (Pavan, |2017; Springel, | 2021} L1, 2023)). Instruments are needed to account for
this endogeneity issue. At the same time, instruments also help identify the random coefficients,
thus serving a dual role. Recent literature has pointed out that the classic BLP instruments, con-
sisting of simple sums of product characteristics, tend to perform rather poorly (Reynaert and
Verboven, 2014; |(Gandhi and Houde, [2019). This literature suggests finding approximations to
optimal instruments as in Chamberlain| (1987). In my estimation, I use differentiation IVs as
introduced by (Gandhi and Houde| (2019). The idea is to describe the relative position of each

product in the characteristics space. I build three variants of differentiation I'Vs: a local variant
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that counts products close in characteristic space, a quadratic variant that sums squared differ-
ences between product characteristics, and a discrete variant for discrete variables that counts

the number of products with the same value for the characteristic:

Z5 =Y |dly| < sd(d)}
leC\{s}

Z]’?I;Quadratic _ Z d?th
leC\{s}

k,discrete

thd ¢ o= Z 1{|d§lt|:0}
leC\{s}

where |d§:’lt| is the absolute value of the difference between products j and [ in characteristic
k, sd(dk) is the standard deviation of characteristic k across markets, and C is the set of prod-
ucts considered. I build four kinds of instruments of each variant: one considering own-firm
products, one considering rival-firm products, one considering own-firm products of the same
engine type (BEV, PHEV, or ICE) and one considering rival-firm products of the same engine
type.

I build the local and quadratic variants for all continuous characteristics and the discrete
variant for all discrete characteristics. I also create local and quadratic variants for a price in-
dex, obtained from regressing the observed price on demand- and cost-shifters. The range of
BEVs is endogenous, but I assume that the range of PHEVs is not. This is why I build the
local and quadratic variants for the range of plug-in hybrid vehicles. I also build the local and
quadratic variants for battery efficiency (measured in kWh/100 km), which I assume to be ex-

ogenous. I use a subset of all the instruments that I create.

Car demand: price I exploit data on manufacturer-supplier links that allows me to iden-
tify a specific model’s country of production. Following Grieco, Murry, and Yurukoglu (2023]),
I use the PPP-adjusted exchange rate between Germany and the country of production, as pro-
vided in the Penn World Tables. This shifter accounts for cost changes via wage changes and
via nominal exchange rate changes. I also use an index for steel prices (obtained from Ibis-
World) that I interact with the car’s size (length x width x height).

The differentiation IVs also help to identify the price parameter, as they shift markups. For
example, a car facing strong competition along (a) certain product dimension(s) should earn a
lower markup. On the other hand, a car that has no close competitors in the attribute space will

be able to earn a high markup for firms as diversion to other products will be limited.

Car demand: range. I build two cost shifters to instrument for range: First, I use the
Bloomberg NEF battery cost estimate and interact it with the size (Ilength x width x height) of
the car. Second, I exploit manufacturer-supplier data to identify the battery supplier of each

EV and interact the exchange rate between the Euro and that supplier’s home country with the
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car’s size. Both these instruments use important facotrs shifting the marginal cost of providing
range. The impact of these cost shocks scales with the size of the car, given that larger cars
tend to deploy larger batteries.

I also build a differentiation instrument built on a range index akin to the price index de-
scribed above. In particular, I count the number of cars whose predicted range is below 100km
and build the quadratic version of this instrument for own- and rival-firm products. The idea
behind this instrument is to account for competition between pure electric and plug-in hybrid
cars. The other differentiation instruments also help identify the range parameter: an EV facing
tight competition will be constrained to offer a higher range, hence offering higher ”quality” in
this dimension. The range parameter is also identified through the quadratic instruments that
count the squared characteristics of close rivals: For example, competing with many heavy cars
will make it easier for firms to offer lower range as heavier cars tend to suffer from low range,
given the energy needed to move this weight. Finally, the exogenous characteristics of the car
will also help to identify the range parameter as they are good predictors of range. Note that the
assumption on car maker’s choices ensures validity of these instruments: Car attributes other

than price and range are set beforehand, ensuring they are uncorrelated with the error term.

Car demand: charging stations. I account for the endogeneity of the charging station net-
work by including subsidies as instruments. These subsidies vary across years as well as across
states and exogenously shift the number of charging stations but do not directly affect the utility

of consumers.

Car supply. On the supply side, firms choose range after they have fixed all other product at-
tributes. Range choices can thus be correlated with unobserved marginal cost shocks. I account
for this endogeneity issue by constructing differentiation I'Vs built on the exogenous character-
istics entering the marginal cost function. I also include the observed exogenous characteristics
entering the baseline marginal cost, as these characteristics were chosen before range. As on

the demand side, I use a subset of the instruments that I create.

Charging station entry. Just like on the car demand side, there is a feedback loop between
the number of stations in a given period and the cumulative EV base, which includes newly
bought cars in that period. I account for this issue by instrumenting the cumulative EV base
with the gas station density in the given state in the given year. A larger density of gas stations
leads to lower gasoline prices (see Haucap, Heimeshoft, and Siekmann, [2017). Lower gasoline
prices in turn make the overall costs of combustion cars cheaper relative to electric cars, which
leads to a lower EV base. In particular, I draw a radius of 5 kilometers around each gas station
and count the number of competitors. I then compute the median number of competitors in each
state in each year and take the logged value. I also use the yearly average fuel prices in each
state in each year as well as the length of the road network in a given state. Gasoline prices
directly affect the usage cost of combustion cars and the size of the road network correlates

with the level of car ownership.
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4.2 Identification

Using the set of instruments described above allows me to pin down the estimated parameters.
I recover the mean utility parameters [ and the cost parameters ¢ through a linear projection.
Variation in market shares and observed characteristics then identify 5. Market share variation
exists across states (the m part of the market index) and time (the ¢ part of the market index). In
contrast, product characteristics mainly vary across time (except for the endogenous charging
station variable). The demand-side parameters, coupled with an assumption on firm behavior,
allow me to back out implied marginal costs. Changes in the implied marginal cost and ob-
served cost-shifters then identify the vector of marginal cost parameters ¢. In addition to using
the instruments described above, variation in the observed characteristics helps identify o. Sim-
ilarly, variation in market shares, prices, and consumer income identify the price coefficient c.
Prices vary across time, whereas consumer income varies both across time and across states.
The parameters (7, ;) governing the marginal cost of range are identified from variation in
observed range levels and the implied marginal cost of providing it, which, in turn, depends on
variation in prices and market shares. For a more elaborate discussion on the identification of
demand and supply models with differentiated products, refer to Berry and Haile (2014). The
key identifying assumption on the charging station side is that the gas station density only af-
fects charging station entry through the cumulative EV base (see Springel, 2021)). Identification
would break down if gas station density grew with EV adoption in a given state. This is not the

case, however.

4.3 Zero market shares

Approximately 4% of my observations are products with strictly positive national-level sales
but zero state-level sales. Zero sales pose a problem in random coefficient demand models, as
the estimation procedure is not well defined when zero sales are present. Deleting observations
with zero sales from the sample is problematic because it alters the market structure and makes
these products unavailable in counterfactual analyses. There exist approaches in the literature
to accommodating zero sales in random coefficient demand models | T follow [D’Haultfceuille,

Durrmeyer, and Février| (2019) and use a simple correction of state-level market shares:

@ =Gt 05
jm M,,
where q;f,f is the observed quantity sold of product j in a given market and M., is the market

size in that market. This correction aims to minimize the bias of log(s;,,) such that demand

21Li| (2023) uses a Bayesian shrinkage estimator to move market shares away from zero. Gandhi, Lu, and Shi
(2022) construct bounds for the conditional expectation of inverse demand and show that their approach works
well even when the fraction of zero sales is 95%. Dubé, Hortagsu, and Joo| (2021) use a pairwise-differencing
approach to estimate demand parameters.
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parameters can be consistently estimated. |D’Haultfeeuille et al.| (2019) provide an interesting
and detailed discussion on this. The zero sales problem is rather small in my sample, given
that it only affects approximately 4% of my observations. My results are robust to the use of
different corrections (such as replacing g;,,, = 0 with ¢;,, = 1, see Appendix |G]), which I see as
evidence that my demand parameters are consistently estimated and lead me to believe that the

correction I use is sufficient.

4.4 Estimation of the car demand side

On the demand side, the vector of parameters to be estimated is given by 6; = (57, 8", a).
I allow for random coefficients on characteristics for which I believe consumer heterogeneity
matters: the driving range, an EV dummy for battery- and plug-in hybrid vehicles and Fuel
Cost, measured in €/100 km. The random coefficient on range allows for flexible substitution
patterns between EVs with different range levels. The random coefficient on the EV dummy al-
lows for flexible substitution between electric cars and combustion engine cars. Obtaining such
flexible substitution patterns is crucial for studying the market outcomes of subsidy schemes,
as substitution between EVs with different range levels and across engine types drives these
outcomes. The random coefficient on Fuel Cost allows consumers to have idiosyncratic pref-
erences for a characteristic that proxies the usage cost of cars. Additionally, substantial dif-
ferences across engine types exist in the fuel cost per 100 km, which renders the substitution
patterns between cars of different engine types more flexible. I include a trend in the mean
taste for range, possibly capturing taste changes for range over time. In addition, I add several
characteristics for which I only estimate the mean taste, including the number of public charg-
ing stations per 10,000 inhabitants, fuel cost, footprint, doors, dummies for electric vehicles,
a linear time trend, and a dummy if the firm has its headquarters in the state considered I
also add brand, class, body, and state fixed effects. All remaining unexplained variation is then
collected in ., which is interacted with the instruments described in the previous section to
build moment conditions of the form £ [zj-lmtfjmt] = 0, with z;-imt as an instrument. Stacking
&;jme across products and markets into a column vector &, I obtain the GMM objective function

to be minimized:
win §(04)'Z W27 €(0a),
d

where Z? contains the instruments and W is a positive definite weighting matrix. I use the two-
step efficient GMM estimator, where I use an approximation of the optimal weighting matrix
based on an initial set of estimates to recover the final estimated vector of parameters. The
estimation algorithm that I use is described in detail in Berry et al.|(1995]) and Nevo (2001). In

22 introduce the last variable to account for the fact that car companies often register a large number of cars in
their home state. Firms do so to comply with emissions regulations or to sell these cars at a discount later. Not
accounting for this may introduce a bias, especially for products with small market shares.
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the estimation, I account for various numerical issues that recent literature has drawn attention
to (Dube, Fox, and Su (2012), Knittel and Metaxoglou| (2014), Brunner, Heiss, Romahn, and
Weiser| (2017)), Conlon and Gortmaker| (2020)). First, I approximate the market share integral
with 1,000 draws using modified Latin hypercube sampling. Hess, Train, and Polak (2006)
and |Brunner et al. (2017) show that this method performs very well in random coefficient logit
models and provides better coverage than the more frequently used Halton sequences. Second,
I set the tolerance level in the contraction mapping of the inner loop to le-14 to solve for the
demand-side unobservables. A tight tolerance prevents numerical errors from the inner loop
from propagating to the outer loop. Third, I use the low-storage BFGS algorithm of NLOPT.
Fourth, I initialize the optimization routine from many different starting values to search for a
global minimum. Finally, I check first- and second-order conditions at the obtained minimum

to ensure the optimizer did not get stuck at a saddle point.

4.5 Estimation of the car supply side

With demand estimates in hand, I can derive implied markups and marginal costs. The vector
of parameters to be estimated is 65 = (1,70, 71). I let the baseline marginal cost depend on
several observed characteristics, such as the product’s weight, footprint, fuel efficiency, and
engine power measured in kilowatts. I also include year, firm, class, and body-fixed effects.
All remaining unobserved marginal cost-shifters are then collected in wj;.

Remember that the marginal cost of range consists of an intercept and a linear time trend to
capture the decreasing cost of the lithium-ion cells that are a crucial input for the battery pack,
the size of which, in turn, is a main determinant of range. Any unobserved, product-specific
cost of additional range is then captured by 7;;.

The first-order conditions in (5)) and (6) can be solved for the pair of supply-side unob-
servable vectors w and 7. I then interact them with the instruments described in the previous
section to build moment conditions of the form F[z},w;;| = 0 and E[z5n;] = 0. Letting p;; =
(wjt, m;¢) and stacking across products and markets, I then obtain the GMM objective function

to be minimized:

min p(y0, 1) Z*W*Z* p(70, 1),
Y0,7Y1

where Z° contains the instruments and WW* is a positive definite GMM weighting matrix. The
baseline marginal cost parameters 1) can be concentrated out of the minimization routine, much
like the linear mean tastes in the utility function. Note that the number of observations differs
on the demand and supply sides. As firms choose price and range at the national level, I have
one national market per year ¢ and not m state-level markets per year ¢ on the supply side.

I take into account subsidies as outlined in equations (TI)-(12). I do not consider rebates

granted by firms for two reasons: The first is that some firms granted larger rebates than they
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had pledged. I do not observe these rebates. The second reason is that during the sample period,
firms also granted substantial rebates on gasoline and especially diesel cars, to a large extent in
response to the Volkswagen emissions scandalE] The list prices net of government subsidies
can be seen as the maximum transaction price, as is the case in most of the literature estimating

demand and supply in new car markets.

4.6 Estimation of the charging station entry side

Estimation of the charging station side is straightforward. Once I obtain equation (I8)), I esti-
mate v using two-stage least squares. In the estimation, I include national-level subsidies and
state-level subsidies. I set the national-level subsidies equal to € 8,000. The vast majority of
stations (around 86.7%) in my sample received a subsidy of up to € 3,000 for the installation
and of up to € 5,000 for the connection to the grid. In the preferred specification, I also include
a linear time trend and state-level controls. In particular, I use the population density (which
varies across time) and the surface area of the state (which does not vary across time). I allow
the time trend to be different for the states of Berlin, Hamburg, and Bremen. These three states
are city-states in which the development of the EV market is likely to be very different from
other, less dense, states. I also include a city state dummy to control for unobserved differ-
ences between these states and the other states. I also run an alternative specification in which
I replace these state-level controls with a state fixed effect which I report along with other ro-
bustness checks in Table[I3]in Appendix[Al I use data from 2015 to 2021 to estimate the station
entry side. The reason for this choice is twofold. First, adding later years to the data set offers
more cross-sectional and temporal variation in state subsidies and the EV base. Second, I only
have information on gasoline and diesel prices starting in late 2014, so I cannot build the gas

price instrument for 2012 to 2014.

5 Results

The estimated coefficients of key parameters are in Table [2| The first three columns show de-
mand and supply estimates and the last three columns show estimates from the charging station
entry equation. Table [TT]in Appendix [A]reports first-stage regressions. Table [I2]in Appendix
reports the full demand and marginal cost estimates. Table |16/ in Appendix |C| reports the
results when assuming firms and charging stations move simultaneously. Appendix [F| presents
results from an alternative specification with an interaction between range and charging sta-
tions. Overall, the signs and magnitudes of the estimated coefficients are in line with standard
economic intuition.

Consumers like greater range, all else equal. The range-specific trend is negative, meaning

Zhttps://www.handelsblatt.com/unternehmen/industrie/studie-zum-automarkt-wo-es-die-groessten-diesel-
rabatte-gibt/22682110.html?protected=true
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Table 2: Key estimates

Demand/supply for cars Station entry
Coefficient SE Coefficient SE
Demand: Means
Range 1.974  (0.356) log(EV base) 0.684  (0.143)
Range x Trend -0.179  (0.033)  National Subsidies 0.098  (0.019)
log(Charging Stations) 0.415 (0.084) Local Subsidies 0.029  (0.033)
Fuel Cost -0.543  (0.038)
BEV -9.361  (2.018)
PHEV -6.705  (1.933)
Demand: Interactions
Price / Income -6.310 (0.62)
Demand: St. Dev.
BHEV 2.235  (0.982)
Range 0.288  (0.367)
Fuel Cost 0.254  (0.017)
Supply: Range provision
Intercept 1.008  (0.035)
Trend -0.092  (0.008)
Statistics
Mean own-price elasticity -3.714
Mean own-range elasticity (BEVs) 3.260
Mean markup (BEVs) (€ 1,000) 7.722

Note: Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State Fixed Effects
included on car demand- and supply side. Linear time trend and state demographics included on station entry
side. See Table @lfor the full demand and supply estimates.

that consumer preferences for range become less intense throughout the sample period. One
explanation for this could be that range anxiety has decreased over time due to consumers
learning more about electric vehicles. This learning may come from their own experience, that
of peers, or simply a greater availability of information on electric cars. Research and consumer
surveys suggest that the driving range of current battery-electric cars is sufficient for most trips.
Li, Linn, and Muehlegger| (2014), for instance, report that households drive approximately 50
miles per day on average. Another explanation may be that faster battery charging has made
consumers less worried about range. A further explanation for the negative trend is that it
captures decreasing marginal utility of range as the range increases. Such an increase in the
range of electric vehicles has indeed occurred, as evidenced in Figure@ The random coefficient
on range suggests that there exists considerable heterogeneity in the valuation of range, even
though this parameter is estimated imprecisely. The positive and statistically significant sign
on the Charging Station variable implies that consumers prefer more charging stations, in line
with previous studies on demand for electric vehicles (L1, 2023; Springel, 2021). The mean
range elasticity is equal to 3.260.

All else equal, consumers strongly dislike both battery and plug-in hybrid electric vehicles,
even though there is considerable heterogeneity in the population. A small share of consumers
prefers electric cars over those with a combustion engine. The results suggest that the dis-
utility from purchasing EVs decreased over the sample period since the driving range and the
number of charging stations increased. This finding also underscores the importance of range

and charging stations for the mass adoption of EVs. Overall, consumers enjoy a lower utility
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from EVs compared to combustion cars. However, this utility penalty decreases with a higher
range and a larger charging station network.

The negative and significant coefficient on price over income translates into a mean price
elasticity of -3.714, which falls within the range of figures found in the long literature on
demand estimation for new car markets. Table 22| in Appendix [H| shows how my estimated
price elasticity compares to those found in other papers. Unlike the sensitivity of range, price
sensitivity barely changes over the sample period. Due to slightly larger and slightly more
dispersed household income, mean price sensitivity dropped slightly from 2012 to 2018, with
the variance increasing slightly. The relative stability of price sensitivity, together with the
finding of a lower valuation of range over time, suggests that towards the end of the sample
period, consumers valued (a lower) price more relative to range than at the beginning.

Table [2] also suggests that important indirect network effects exists on both the EV demand
and the charging station entry side. To give an idea of the magnitude of the coefficients, I
calculated the predicted increase in the number of charging stations in each state if there had
been an additional 1,000 EVs on the road in 2018. Such an increase in the EV base would have
led to between 26-135 new charging stations, depending on the state, with the median increase
being 64 stations. Overall, these additional 16,000 EVs would have led to an additional 1,170
charging stations. Note that there were 17,124 chargers and 197,176 EVs circulating in 2018.
In turn, these additional charging stations would increase the willingness to pay for EVs by
between € 30-608, with the median increase being € 170@

Consumers dislike higher fuel costs, as evidenced by the negative parameter in the mean
utility. A dis-utility from higher driving costs makes sense, as these increase the overall cost
of using a car. However, consumers exhibit considerable heterogeneity in their valuation of
fuel costs. Heterogeneity in the valuation of fuel costs is also unsurprising, as factors such as
income, driving behavior, and preferences for less fuel-efficient cars play a role in shaping an
individual’s fuel cost valuation.

On the marginal cost side, I find that range is costly to provide. Range provision became
cheaper over the sample period, evidenced by the trend’s negative and statistically significant
coefficient. This trend translates into a mean decrease in the marginal cost of providing range
of approximately 43% from 2012 to 2018 (see Figure [3). This number is comparable to the
estimates of lithium-ion cell price decreases in Hsieh et al. (2019), for instance.

The estimates of the range-specific marginal cost shock 7 are intuitive: Tesla models have
the lowest range-specific marginal cost shocks. Overall, there is a negative correlation between
the total range of a car and it’s range-specific marginal cost shock, with the correlation being
-.4. The mean value for 7 is .040 and it’s variance is .039.

Figure [] plots marginal cost curves at different range levels for 2012 and 2018. The lines

24Note that the maximum increase in the willingness to pay occurs in a state that has a stock of around 1,300
EVs and 112 charging stations in 2018. The minimum increase occurs in a state that has a stock of around 39,000
EVs and 3,662 charging stations in 2018.
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Figure 3: Estimated yearly mean marginal cost of providing range
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Figure 4: Estimated marginal cost functions for 2012 and 2018

This figure plots hypothetical marginal costs at different range levels in 2012 and 2018.

are computed using the mean estimated baseline marginal cost across BEVs and the mean
estimated marginal cost of providing range for 2012 and 2018, respectively. The curve is much
flatter in 2018 than in 2012, when range levels higher than 250 km resulted in a marginal cost
above € 50,000. The figure suggests that it was not feasible to provide many of the range levels
observed in 2018 at a competitive price.

To dig deeper into the validity of the marginal cost estimates, I translate the marginal cost
of providing range into a battery cost per kWh. Dividing the estimated mean marginal cost of
providing range by the battery efficiency, I obtain a cost per kWh. I then compare this per-kWh
translation of the marginal cost of providing range to estimated costs of a battery pack, taken
from an engineering report (Steen et al., 2017). This report provides an estimate for the battery

pack cost in $ per kWh for the sample period considered, which I convert into euros and deflate.
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Figure 5: Per-kWh cost at observed range levels against battery pack cost

Battery pack cost estimates are taken from [Steen et al.| (2017)). Values for 2018 are estimates. Per-kWh
cost are calculated by dividing the marginal cost of providing range by the battery efficiency.

The results are shown in Figure [5| We can see that the estimated per-kWh cost, evaluated at
observed range levels, is above the battery pack cost coming from engineering estimates. This
finding makes sense, given that the battery pack’s size is the main but not the only determinant
of providing range. Additionally, the graph shows the per-kWh cost evaluated at observed
range levels and imputed marginal cost levels. Given the log-linear marginal cost specification,
this per-kWh cost would be different at different marginal cost and range levels. However,
apart from 2013-2014, the per-kWh cost backed out of the model follows a similar trend to the
battery pack estimate, providing evidence that my marginal cost estimates are reasonable.

The baseline marginal cost estimates have the expected signs and magnitudes. Larger,
heavier, more powerful, and more fuel-efficient cars are more costly to produce. Battery electric
vehicles are cheaper to produce, all else equal, which is reasonable given that apart from the
costly range provision, there are many parts (gearbox, exhaust pipe, starter, injection system,
etc.) that are not necessary for the production of a BEV. The supply-side results suggest that
range provision accounts for approximately 25% of the marginal cost of producing a BEV, on
average. This finding is in line with recent engineering cost estimates (Lutsey and Nicholas,

2019), further suggesting that my marginal cost estimates are reasonable in magnitude.
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Table 3: Mean own-and cross-price elasticities of selected BEVs in 2018

The role of network effects

i3 Soul i.MiEV Leaf Golf up.  Markup
With indirect network effects
i3 -3.6770  -0.0796  -0.0828 -0.0788 -0.0788  -0.0830 = 8,510
Soul -0.0226  -3.3827 -0.0219  -0.0220 -0.0222  -0.0221 7,694
iMIiEV ~ -0.0007 -0.0007 -2.8504 -0.0007 -0.0007 -0.0007 = 6,423
Leaf -0.0467  -0.0463  -0.0477 -3.4543 -0.0462 -0.0478 = 7,587
Golf -0.0873  -0.0872  -0.0892 -0.0866 -3.4384 -0.0894 = 8,195
up. -0.0150 -0.0149 -0.0150 -0.0149 -0.0149 -2.7899 = 6,818
Without indirect network effects
i3 -3.5759 0.0225 0.0195 0.0230 0.0227 0.0191 = 9,507
Soul 0.0058  -3.3544 0.0068 0.0066 0.0063 0.0066 = 8,423
i.MIiEV 0.0001 0.0001  -2.8496 0.0001 0.0001 0.0001 = 7,055
Leaf 0.0110 0.0117 0.0104  -3.3964 0.0116 0.0102 = 8,195
Golf 0.0199 0.0205 0.0188 0.0209 -3.3312 0.0185 = 8,841
up. 0.0021 0.0022 0.0022 0.0022 0.0022  -2.7727 @ 1,518

Note: Upper half of table shows elasticities taking indirect network effects into account, lower half of table shows
elasticities when ignoring indirect network effects.

Table [2] suggests the presence of strong indirect network effects on both the EV demand- and
the charging station entry side. We saw in Section that indirect network effects alter the
market share derivatives with respect to price and range and hence the price and range elastici-
ties. Through affecting pricing decisions, indirect network effects also affect markups. Shutting
down indirect network effects in firm decisions would lead to markups that would be 8% higher
on average. Table 3|shows the effect of indirect network effects on own-and cross-price elastic-
ities as well as on markups of selected BEVs in 2018. We see that the own-price elasticities are
larger when firms take account of indirect network effects. Moreover, cross-price elasticities
become negative, meaning that BEVs act as complements: Increasing the price of a BEV will
lead to lower sales of rival BEVs. We can also see that markups are substantially lower. For
instance, the markup of the Nissan Leaf is estimated to be around €600 lower when taking
into account indirect network effects. Note that indirect network effects also accrue to PHEVs,
whose markups would be 6% higher absent indirect network effects.

We can see similar patterns in Table [4] that shows own-and cross-range elasticities. When
firms take into account indirect network effects, own-range elasticities increase and the sign of
cross-range elasticities flips from negative to positive, again meaning that BEVs act as comple-

ments.
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Table 4: Mean own-and cross-range elasticities of selected BEVs in 2018

i3 Soul i.MiEV Leaf Golf up.
With indirect network effects
i3 2.0889 0.0407 0.0443 0.0399 0.0401 0.0445
Soul 0.0156 2.6955 0.0168 0.0160 0.0160 0.0169
i.MIiEV 0.0003 0.0003 1.5027 0.0003 0.0003 0.0003
Leaf 0.0383 0.0384 0.0410 3.1708 0.0383 0.0413
Golf 0.0567 0.0574 0.0607 0.0566 2.4937 0.0610
up. 0.0063 0.0064 0.0065 0.0063 0.0063 1.3329
Without indirect network effects
i3 2.0320 -0.0167 -0.0133 -0.0174 -0.0170  -0.0130
Soul -0.0061 2.6739  -0.0051 -0.0059 -0.0058 -0.0050
iMiEV ~ -0.0001  -0.0001 1.5023  -0.0001  -0.0001 0.0000
Leaf -0.0128  -0.0131  -0.0105 3.1195 -0.0129 -0.0102
Golf -0.0188  -0.0185 -0.0153 -0.0192 24182  -0.0150
up. -0.0014  -0.0014 -0.0013 -0.0014 -0.0014 1.3251

Note: Upper half of table shows elasticities taking indirect network effects into account, lower half of table shows
elasticities when ignoring indirect network effects.

6 Counterfactuals

In this section, I use the estimated model to quantify the effect of subsidies on battery electric
vehicles by performing several counterfactual exercises. In a first step, I analyze how firms
distort price and range in response to subsidies and how indirect network effects impact these
distortions. In a second step, I assess the subsidy scheme imposed in Germany. Finally, I
evaluate different subsidy schemes and compare them in terms of market outcomes. This step
allows me to describe how subsidy design affects policy objectives and the underlying substi-
tution patterns. It also allows a discussion on the compatibility of different policy objectives.
In Appendix [El I also look at the impact of indirect network effects on price and range choices
as well as market outcomes.

This section also highlights the importance of carefully modeling range choices as an addi-
tional adjustment margin to subsidies. Holding range fixed, firms can only adjust prices. In that
case, the direction of consumer price changes is clear. Only the amount of the price change is
an empirical question and depends on pass-through. When firms can also adjust a product at-
tribute in response to subsidies, the direction of price and attribute changes are no longer clear.
I show this in Appendix I} The direction of price and range changes can lead to very different
substitution patterns that shape policy outcomes. Allowing for range adjustments is also impor-
tant from a policy perspective: Many countries try to incentivize range provision by indexing
subsidies on range or battery size. My framework allows me to study such schemes. Finally,
this section will also highlight the importance of modeling charging station entry and its in-
teraction with EV demand and supply. First, charging station entry generates feedback loops
altering price and range elasticities and hence firm choices. Second, estimating the effects of
station subsidies on charging station entry allows me to evaluate not only purchase subsidies,

but also richer schemes that subsidize charging station entry. I perform all counterfactuals for
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Table 5: Aalysis of price and range distortions

Observed Only price Price + range  Price + range + feedback loops
Price 34,671 +2,345 +11,299 +11,419
(42,274, 42,408)  (+4,608, +19,856) (+4,445, +19,852)
Range 259 0 +41 +42
(+9, +101) (49, +101)
MC 22,570 0 +5,752 +5,826
(+1,586, +11,154) (+1,447, +11,119)
Markup 8,152 +384 +2,156 +2,182
(+324, +436) (+703, +4,192) (+656, +4,112)
Sales 34,761 -7,046 -10,475 -11,092
(-7,457, -6,186) (-12,334,-7,581) (-13,710, -7,386)
Stations 17,124 0 0 971
(-3,590, +4,065)
Government spending 129.636 -67 -67 -75
(-67,-67) (-67, -67) (-96, -34)
Consumer Surplus 51,451 -118 -127 -144
(-3,176, +6,602) (-3,185, +6,597) (-3,194, +6,595)
CO2 emissions 5,192,205 +2,789 +4,298 +4,564

(+1,635, +3,750)

(+2,607, +5,052)

(+2,395, +5,600)

Note: Table gives differences to observed outcomes with 90% C.I. in parentheses. Prices, range levels, marginal
costs, markups, and sales are mean values across BEVs.

2018. Appendix [D] gives details on the counterfactual procedure.

6.1 How do indirect network effects and subsidies distort price and range

choices?

In this subsection, I study how firms strategically adjust price and range in response to subsi-
dies. I do so in three steps. First, I isolate price responses to subsidies, holding range choices
fixed and shutting down feedback loops between EV sales and charging station entry. Second,
I allow firms to adjust both price and range, keeping feedback loops shut down. Third, I allow
firms to adjust price and range and consider feedback loops between EV sales and charging
stations.

The counterfactual outcomes are in Table 3l The first column holds the observed outcome
with the €2,000 purchase subsidy in place. In columns 2-4, I remove the subsidy and re-
compute the market equilibrium allowing price adjustments only in column 2, price and range
adjustments in column 3, and price and range adjustments and EV sales- charging point entry
feedback loops in column 4. We see that, if firms could only adjust prices, they would slightly
overshift the subsidy, with the pass-through rate being around 117%. If firms are allows to
adjust the EV range on top of prices, we see that the subsidy leads to a substantially larger price
decrease, but also a substantial range decrease. These cheaper, lower-range EVs generate more
sales: an additional 3,000 sales compared to when firms can only adjust prices. Taking account
of indirect network effects increases the price and range distortions, but not by much. The

most important effect of these feedback loops is on charging station exit, consumer surplus,
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and CO2 emissions: the subsidy induces leads to EV sales, which induce entry of charging
stations, which in turn induces further EV sales. Consumer surplus increases by around 13%

when accounting for indirect network effects and CO2 emissions decrease by a further 6%.

6.2 What was the impact of the German subsidy scheme?

In the next step, I evaluate the effect of the German support scheme. The scheme consisted
of a €2,000 purchase subsidy for BEVs introduced in 2016 and an € 8,000 subsidy for the
installation and connection of a public charging station introduced in 2017. The explicit goal
was to increase EV sales to have 1 million electric cars on the streets by 2020 and 6 million
by 2030. In this section, I quantify the impact of the introduction of this support scheme. To
do so, I re-compute the market equilibrium in 2018 without the scheme. To look at the relative
importance of purchase- and charging station subsidies, I also consider scenarios where I either
remove the purchase subsidy only or the charging station subsidy only. In all scenarios, I leave
the subsidies for PHEV's unchanged. Likewise, I leave any state-level subsidies in place. Table
[l shows the outcomes for these three scenarios. Column 3 shows outcomes when the whole
scheme is removed and columns 4 and 5 show outcomes when only the purchase subsidy and
only the station subsidy are removed, respectively.

I find that the support scheme led to strong price and range distortions. Removing the whole
support scheme would have resulted in more expensive BEVs with a higher range. Firms would
have collected a larger markup on these BEVs. When comparing the first four rows across
columns 3-5, we see that the strategic price and range reactions are mainly due to the purchase
subsidy. Note that this purchase subsidy is equivalent to a reduction in the marginal cost from
the point of view of firms. In Appendix [[] I show that the direction of firms’ price and range
reactions is unclear a priori Among other things, the direction depends on the price and range
semi-elasticities as well as the marginal cost of providing range. In addition, selling cheap,
low-range BEVs increases substitution from the outside option and decreases cannibalization
on higher-margin combustion cars, making this strategy profitable for firms when facing flat
subsidies.

Note that decreasing range makes the car cheaper to produce. This decrease in marginal
cost can be passed on to consumers, leading to a price reduction that is larger than the amount
of the subsidy In the last column of Table @ we can see that the charging station subsidy
creates only small price and range distortions. Similar to the flat subsidy, it does give car
makers incentives to reduce price and range.

Overall, it becomes apparent that the purchase subsidy drives the price and range distortions
we see in column 3. Note that these distortions are mainly caused by firms being able to adjust

range on top of price. The indirect network effects then amplify these distortions. The price

2Gaudin| (2022) shows that the direction of such strategic reactions are ambiguous even in simpler models
assuming symmetry and single-product firms.
26Note that the price changes shown here are final consumer prices where the subsidy has been subtracted.
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Table 6: Market outcomes without subsidy

With subsidy  Neither subsidy No BEV subsidy  No station subsidy
Price 34,671 +11,579 +11,419 +3,376
(+4,554, +20,560) (+4,445, +19,852) (-736, +9,562)
Range 259 +43 +42 +12
(+9, +103) (+9, +101) (-4, +75)
MC 22,570 +5,887 +5,826 +2,050
(+1,537, +11,507) (+1,447, +11,119) (-573, +6,125)
Markup 8,152 +2,255 +2,182 +787
(+685, +4,333) (+656, +4,112) (-70,+2,323)
Sales 34,761 -16,014 -11,092 -7,794
(-17,548, -13,268) (-13,710, -7,386) (-12,027, -4,542)
Stations 17,124 7,820 971 -7,806
(7,828, -6,289) (-3,590, +4,065) (7,828, -5,974)
Government spending 129.636 -130 =75 -78
(-96, -34) (-88,-71)
Consumer Surplus 51,451 -296 -144 -196
(-3,350, +6,342) (-3,194, +6,595) (-3,256, +6,432)
CO2 emissions 5,192,205 +6,891 +4,564 +3,530
(+4,095, +9,005) (42,395, +5,600) (+1,359, +5,727)

Note: Table gives differences to observed outcomes with 90% C.I. in parentheses. Prices, range levels, marginal
costs, markups, and sales are mean values across BEVs.

and range changes are also in line with the reduced-form evidence I presented in Table [I]

Figure (8| in Appendix [B| shows that the direction of price and range effects goes into the
same direction for all subsidized BEVs. The only BEV whose price and range increase in
response to the subsidy is Tesla’s Model S which did not qualify for the subsidy.

When looking at rows 5-8, we see first that EV sales almost doubled and station entry rose
by around 70% due to the support scheme. Consumer surplus increased by around € 296 mil-
lion whereas the scheme cost € 130 million. The role of indirect network effects also becomes
obvious: Removing the purchase subsidy leads to lower charging station entry. Likewise, re-
moving the charging station subsidy leads to lower BEV sales, even though the loss in sales is
lower than when removing the purchase subsidy. Removing the charging station subsidy would
lower consumer surplus substantially more than removing the purchase subsidy. One reason for
this result is that the charging station subsidy generates strong feedback loops without causing
large distortions in BEV price and range levels. As a result, consumers enjoy both high range
and a large charging station network.

From this exercise, it seems like station subsidies generate larger gains in charging stations
and consumer surplus than purchase subsidies. However, the exercise above does not hold
subsidy spending constant. Spending on station subsidies was higher than spending on purchase
subsidies. To really assess the effectiveness of the different subsidies, we should compare the

schemes holding expenditure levels constant, which is what I do in the next step.
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6.3 Designing EV subsidy schemes

In this section, I investigate the effectiveness of different subsidy schemes in more detail. To
do so, I allow for different levels of purchase and charging station subsidies at constant budget
levels. Moreover, I allow purchase subsidies to depend on the range. The reasons for doing so
are twofold. First, policymakers in some countries use attribute-based subsidies. For instance,
the total subsidy in California and China is or was a function of the driving range or the size
of the battery pack (Rokadiya and Yang, [2019). Second, doing so gives the policymaker the
choice between subsidizing two attributes that enhance BEV quality, creating an interesting
choice: On the one hand, the policymaker can directly incentivize range provision and steer
consumers towards higher-range cars. On the other hand, she can incentivize charging station
entry which will benefit all BEVs and their buyers equally.

In particular, I consider different combinations of A = (A1, A9, \3), where )\ is the flat
part of the purchase subsidy, \; is the range-based part of the purchase subsidy, and A3 is the
charging station subsidy. The purchase subsidy for a BEV with range r; is then \; = A; + Aor;.
Note that while simple, this scheme nests both the case of a flat subsidy and a purely range-
based subsidy. When )\, is zero, we recover a simple flat subsidy of the form implemented in
Germany. When ), is zero, the subsidy depends purely on the range. In that case, the subsidy
is equivalent to a decrease in the marginal cost of providing range. On the other hand, a flat
subsidy is equivalent to a general marginal cost decrease. In other words, a flat subsidy lets
firms choose how to “interpret” the marginal cost decrease: They can treat it as making range
provision cheaper or as reducing the total marginal cost of producing the product. By contrast,
a pure range-based subsidy forces firms to treat the subsidy as a decrease in the marginal cost
of providing range. One can interpret the intermediate cases where both A\, and A, are non-zero
as putting weights on a general and a range-specific marginal cost decrease.

To find the budget-equivalent values for A, I use the following procedure: At a given budget
B, 1 search for values of A that satisfy the budget constraint. I employ a grid search where at
each candidate value X, I solve for the counterfactual equilibrium vector of prices and ranges
as outlined in Appendix [D|and compute the total cost of the scheme. If the cost is either above
or below B, I discard the candidate value, and if the cost is equal to 5 (up to a small tolerance),
I keep it. For each candidate point, I compute the mean price and range of BEVs, the quantity
sold of BEVs, consumer surplu and fleet emissions. To calculate fleet emissions, I rely on
data that gives me the average distance driven by fuel type coming from a survey conducted by
the German Federal Highway Research Institute (Baumer, Hautzinger, Pfeiffer, Stock, Lenz,
Kuhnimhof, and Kohler, 2017)

Note that in the computation of fleet emissions, I assume that BEVs’ CO2 emissions are

equal to zero. Of course, this assumption is only true if they run exclusively on electricity gen-

. . log(1 B Ojmt+ijm
2"Consumer surplus is computed using the log-sum formula: C'S; = > dmt >, w; o9 (13 exl;(, gmetitigme))

28] compute fleet emissions as > ; CO2; ¢; usage;, with CO2; being the CO2 emissions of car j, measured in
g/km, g; being the quantity sold of car j, and usage; the annual amount driven in km.
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erated from renewable sources. The assumption is unrealistic in a country such as Germany,
where an important part of electricity generation comes from CO2-intensive coal-fired plants.
However, there are three reasons why this approach is justified. The first is that it serves as
a useful benchmark since it measures the maximum amount by which fleet emissions can de-
crease. The second is that the main reason why policymakers see electric vehicles as a key
instrument in making the transport sector emission-free is that electricity generation itself is
being decarbonized. Decarbonized electricity generation means that BEVs will eventually be
emission-free, making it a useful benchmark to think of them as zero-emission vehicles. The
third reason is that assuming non-zero CO2 emissions from BEVs requires ad hoc assumptions
on the electricity mix used and driving behavior.

I focus on three outcomes in this section: First, I look at CO2 emissions from new car
sales. Focusing on this target makes sense, as the ultimate goal of subsidizing BEVs is to
decarbonize the transport sector. The fewer vehicles emitting CO2 sold, the lower are the CO2
emissions from the existing vehicle stock. Second, I focus on diffusion. This target makes sense
for two reasons. First, many governments have introduced explicit sales targets for electric
vehicles. A diffusion-maximizing approach ensures the achievement of these sales targets.
Second, a strategy focusing on maximizing diffusion can also be a static approximation to a
dynamic optimization problem: A policymaker quickly wants to move down a learning curve.
A diffusion-maximizing strategy can approximate well the desire to move down the learning
curve swiftly in the early phase of adoption. An interpretation of sales targets can be that
the policymaker simplifies the complicated dynamic optimization problem by defining short-
and medium-run sales targets that allow the industry to move down the learning curve quickly.
Third, I look at consumer surplus, as well as total surplus. When calculating total surplus I take
account of the social cost of carbon, which I assume to be €75/t.

In Table [/} I present the schemes that maximize different policy objectives, as well as the
observed scheme (A = (2,0, 8))@ We can see that different schemes maximize different
policy objectives. By increasing the (flat) purchase subsidy and decreasing the charging station
subsidy, the policymaker can maximize BEV sales. A similar scheme with slightly more weight
on station subsidies minimizes CO2 emissions from new car sales. By shifting weight on
subsidizing charging stations, the policymaker can maximize consumer surplus as well as total
surplus We can also see that schemes that employ purchase subsidies lead to strong price
and range reactions by firms. Consumers seem to have strong preferences for both higher
range and a large charging station network. On the other hand, a high flat purchase subsidy
incentivizes firms to sell cheaper, lower-range BEVs. Consequently, consumer surplus (as well
as total surplus) maximization requires a scheme causing small price and range reactions by

firms and a large amount of charging station entry, which happens when mainly subsidizing

2Table|17|in Appendixreports the results when assuming firms and charging stations move simultaneously.
3Note that only subsidizing charging stations also maximizes total surplus when considering a higher or lower
social cost of carbon emissions (such as €200 or €25).
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Table 7: Comparison of subsidy schemes

Scheme Price Range Sales Stations CO2 CS TS
(0,0, 0) 46,292 302 18,656 9,306 5,199,395 51,191 74,187
(2,0,8) -11,621 -43 +16,105  +7,818 -7,190.4 +260 +365
(1.35,0,9.09)  -5,699 -22 +13,682 49,657 -6,224 +265 +417
(3.1,0,4.92) -15,285 -59 +18,827  +3,427 -8,127 +214 +349
(3.25,0,4.23)  -15,704 -61 +18,854  +2,650 -8,099 +200 +329

Note: Table shows differences with respect to scenario without any subsidies. Prices, range levels, and sales are
mean values across BEVs.

the charging station side. Under the scheme A = (1.35,0,9.09), 79% os the budget is spent
on charging station subsidies. In that case, fewer consumers buy a BEV, but the BEVs sold
have a high range and profit from a large charging station network. Note that the environmental
benefits from mainly subsidizing charging stations may be understated to the extent that more
range and a larger charging station network may induce consumers who own both an EV and
a combustion car to drive the EV more and the combustion car less (Sinyashin, 2021)). Also,
purely subsidizing charging stations leads to a larger ratio of public chargers to EVs. This
can alleviate congestion concerns from having too many EVs per charger. While not explicitly
modeled, a too low ratio of public chargers to EVs may lead to direct negative network effects
as too many EVs compete for access to chargers. Note that these results are in line with findings
by Jia Barwick et al.[ (2023), who study a Chinese subsidy design and also find that attribute-
based subsidies lead to higher range. The results also concur with Springel (2021), who finds
that using both purchase and station subsidies maximizes EV adoption in the case of Norway.
Table [§] reports substitution patterns across the different schemes. Columns 2 and 3 re-
port where substitution comes from and columns 4 and 5 report where substitution goes to.
Note that since PHEVs also benefit from a larger charging station network, their sales numbers
also increase. We can see that between 72% and 75% of the substitution towards EVs comes
from the outside option, meaning that the new car market overall expands. Substitution from
the outside option can come from consumers who otherwise would have bought a used car or
consumers who would not have bought a car at all. To the extent that the subsidy generates
substitution from the used car market, the environmental benefits of the subsidy scheme are
higher than reported as used cars in 2018 were predominantly combustion cars. These cars are
often of an older vintage built to comply with less stringent emission standards. Substitution
from consumers who would not have bought a car at all lowers the effectiveness of the subsidy
scheme as its main stated goal is to electrify private transport and not expand car ownershipEr]
This table also explains why the scheme A = (3.1, 0,4.92) minimizes CO2 emissions from
new car sales. Doing so requires two conditions to be met: First, a large part of the substitution

towards EVs should go towards BEVs. Second, minimizing CO2 emissions entails a trade-off

31In addition, more cars overall create further negative externalities, such as local pollution from breaking and
accelerating and road congestion.
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Table 8: Substitution patterns across subsidy schemes

Scheme Substitution from: Substitution to
Scheme ICE Outside option BEV PHEV
0,0, 0) 0 0 0 0
(2,0,8) 5,764 15,840 16,105 5,499
(1.35,0,9.09) 5,595 14,744 13,682 6,657
(3.1,0,4.92) 5,315 15,943 18,827 2,431
(3.25,0,4.23) 5,101 15,558 18,854 1,804

Note: Table shows how many consumers substituted away from combustion cars (ICE) and outside options and
how many substituted towards BEVs and PHEVs, compared to the scenario without any subsidies.

between generating as much substitution from combustion cars as possible on the one hand and
generating substitution from very polluting cars on the other hand. While schemes causing less
price and range distortions generate both the largest amount of substitution from combustion
cars and also generate substitution from more polluting cars, these schemes generate substan-
tial substitution towards PHEVs that are not zero-emission. The large amount of substitution
towards PHEVs is the reason why these schemes do not minimize CO2 emissions from new car
sales. The observed scheme A = (2,0, 8) generates more substitution from combustion cars
than the emission-minimizing one. However, at the observed scheme, more subsitution goes
towards PHEVs.

In this section, we have seen that a policymaker faces a trade-off between maximizing BEV
sales, minimizing CO2 emissions from new car sales, and maximizing consumer and total
surplus. The main drivers behind this finding are strategic price and range reactions to subsidies
by firms which are amplified by indirect network effects. Firms react to flat purchase subsidies
by decreasing both the price and range of BEVs that generate large sales and important indirect
network effects. Since consumers have strong preferences for both range and charging stations,
they prefer a scheme that delivers both high-range BEV's and a large station network. To achieve
this outcome, the policymaker needs to minimize price and range reactions by reducing the
purchase subsidy. Note that the policymaker can always achieve a combination of higher BEV
sales, lower CO2 emissions from new car sales, and higher consumer and total surplus. In
fact, the observed scheme, while not optimizing any policy goals, actually delivers the third-
highest EV sales and emissions savings and the second-highest station entry, consumer and

total surplus.

7 Conclusion

In this paper, I study subsidy design in the presence of adjustable product attributes and indirect
network effects. In particular, I analyze how indirect network effects affect price and range
decisions of EV producers and how subsidies affect EV prices and range, charging station

entry, and policy outcomes.
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I develop a structural model of endogenous product attribute choice in the presence of
indirect network effects and estimate it using a novel data set on state-level new car sales
in Germany. On the demand side, consumers choose between differentiated cars of different
engine types. The demand side allows for flexible substitution patterns that are key to evaluating
how purchase subsidies affect car choices. On the car supply side, firms make endogenous price
and EV range choices, allowing me to study their interaction with indirect network effects
and subsidies. The charging station entry side links the number of charging stations to the
cumulative EV base and the level of charging station subsidies. The model allows me to study
how indirect network effects interact with endogenous price and range decisions and how these
decisions affect policy objectives of EV subsidy programs.

I find important indirect network effects both on the EV demand- and on the charging
entry side. As a result, own-price elasticities are larger in absolute value when taking indirect
networks effects into account. Not accounting for these effects would lead to EV markups that
are 8% higher on average. Indirect network effects lead to positive cross-price and negative
cross-range elasticities, which has important implications for the price and range choices of
EV producers. I also find that consumers have strong preferences for range, which is costly
to provide. On the supply side, I find that the marginal cost of providing range decreased by
around 43% from 2012 to 2018.

I analyze a German program for purchase and charging station subsidies. I find that this
program doubled EV sales but caused strong price and range distortions. The program led
to cheaper, lower-range EVs on which firms collected a lower markup. I find that removing
the charging station subsidy would decrease EV sales by 22% and charging stations by 46%.
Removing purchase subsidies would decrease EV sales by 32% and charging stations by 6%.

To comprehensively analyze subsidy design, I allow for range-based purchase subsidies and
allow the policymaker to freely choose the amount of flat and range-based purchase subsidies
and charging station subsidies while holding the budget constant at the observed subsidy cost in
2018. I find that the policymaker faces a trade-off between maximizing EV sales, maximizing
consumer surplus, and minimizing annual CO2 emissions from new cars. Whereas a large flat
purchase subsidy maximizes EV sales at a lower range and prices, consumers prefer the vast
majority of the budget being spent on charging subsidies. A high purchase subsidy coupled with
a low charging subsidy minimizes CO2 emissions from new car sales. The subsidy maximizing
total surplus coincides with the scheme maximizing consumer surplus.

The results have important implications for policymakers. It is crucial to understand strate-
gic firm reactions generated by different subsidy schemes, as they can lead to stark price and
range distortions. These distortions will drive substitution patterns between EVs and combus-
tion cars, which in turn will shape the policy outcomes of subsidies. In particular, EV sales
targets or outright maximization of EV sales can trigger unintended consequences in the form
of price and range distortions.

My paper leaves scope for future work. First, I do not directly explore dynamic incentives
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that may exist due to learning effects. Second, there exists a dynamic angle to the chicken-
and-egg problem: Charging station providers and firms may wait on one another to enter the
market, stalling the development of the EV industry absent coordination or some other kind of

intervention.
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Online Appendix
A Additional Tables

Table 9: Summary statistics

Mean values of key characteristics

Variable 2012 2013 2014 2015 2016 2017 2018
BEV
Price 30,490 31,295 35,392 32,569 37,104 37,200 34,671
Range (in km) 168 173 202 196 213 246 259
Fuel Cost 4.02 4.34 4.37 4.19 4.24 4.28 4.21
Acceleration 2.8 2.98 3.19 2.96 3.31 3.26 2.94
Weight 1,581 1,662 1,797 1,797 1,867 1,902 1,841
Footprint 6.01 6.4 6.78 6.78 7.03 7.13 6.97
Doors 4.5 4.7 4.85 4.85 4.86 4.88 4.89
Number of Products 6 10 13 13 14 16 18
Sales 2,100 5,517 9,044 13,234 12,201 25,593 34,629
PHEV
Price 43,288 48,472 44,265 56,007 57,479 54,651 57,126
Range (in km) 54 53 52 44 40 45 45
Fuel Cost 5.29 5.64 5.76 5.77 5.57 5.58 5.89
Acceleration 4.58 5.16 5.02 5.81 5.82 5.81 5.95
Weight 1,988 2,160 2,143 2,408 2,476 2,425 2,449
Footprint 7.93 8.17 8.04 8.53 8.66 8.66 8.74
Doors 5 5 5 5 4.87 4.86 4.79
Number of Products 2 3 6 11 15 22 24
Sales 1,148 1,079 2,671 8,248 10,614 25,374 25,841
ICE
Price 32,582 32,873 33,914 33,881 34,653 33,669 33,652
Range (in km) 995 1,018 1,039 1,057 1,063 1,023 997
Fuel Cost 10.06 9.32 8.62 7.6 6.98 7.47 8.01
Acceleration 5.29 5.32 541 5.44 5.62 5.76 5.74
Weight 2,023 2,035 2,044 2,043 2,031 2,008 2,017
Footprint 8 8.04 8.07 8.08 8.1 8.09 8.12
Doors 4.43 4.48 4.52 4.55 4.52 4.58 4.63
Number of Products 233 233 227 222 214 213 215
Sales 2,739,581 2,569,876 2,651,415 2,767,185 2,855,922 2,864,409 2,819,762
Stations
Number of Charging Stations 1,229 1,503 2,072 3,199 5,449 9,296 17,124

Note: This table shows average values of key characteristics, the number of products available, and total sales,
broken up by engine type. The last row holds the cumulative number of charging stations.
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Table 10: Charging station entry

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Charging stations

Total 1,229 1,503 2,072 3,199 5449 9,296 17,124 27422 38,510 53,382
Level 2 1,225 1,499 2,048 3,066 5,005 8298 15,332 24,446 33,893 46,286
Level 3 4 4 24 133 444 998 1,792 2,976 4,617 7,096

PctLevel2 0997 0997 0988 0958 0919 0.893 0.895 0.891 0.880 0.867

Note: This table shows cumulative numbers of charging stations. The second and third lines break this up
between Level 2 and Level 3 chargers, the fourth row shows the share of Level 2 chargers among the number of
chargers installed.

Table 11: First Stage Estimates

Price Range Range x Trend Stations
Coefficient SE Coefficient SE Coefficient SE Coefficient SE

Exogenous Charac.

Fuel Cost -0.807 (0.027) 0.011 (0.001)  0.050 (0.004)  0.008 (0.002)

Footprint 9.019 (0.096)  0.055 (0.003)  0.259 (0.013)  0.022 (0.006)

Acceleration 3.694 (0.047)  -0.017 (0.001) -0.086 (0.006)  -0.004 (0.002)

Doors 0.227 (0.066) -0.013 (0.001)  -0.069 (0.006)  -0.001 (0.003)

BEV 16.457 (1.572)  0.958 (0.091) 0.294 (0.454) 4531 (0.246)

PHEV 13.412 (1.954) -1.597 (0.118)  -8.641 (0.563) 4.831 (0.295)

Own State 2.381 (0.366)  0.003 (0.012) -0.010 (0.067) 0.251 (0.027)
PHEV

Range x PHEV -5.757 (1.307)  0.004 (0.000)  0.021 (0.002)  0.005 (0.001)

Range x PHEV x Trend -1.089 (0.326) 1.726 (0.101)  13.941 (0.817) -0.328 (0.422)
Cost shifters

Station Subsidies 0.193 0.077)  -0.182 (0.020)  -3.200 (0.146)  0.023 (0.072)

Steel x Volume 2.217 (0.108)  -0.028 (0.006)  -0.195 (0.035) 0.082 (0.012)

GMY x-rate 4.073 (0.146)  -0.045 (0.003) -0.196 (0.017)  -0.020 (0.008)

LI price x Volume -0.775 (0.172) ~ 0.009 (0.003) 0.014 (0.017)  -0.026 (0.011)

LI x-rate x Volume -0.189 (0.048)  0.096 (0.010) -0.017 (0.034) -0.161 (0.023)
Differentiation I'Vs

BEV count-local-own -1.137 (0.326)  -0.035 (0.004) -0.159 (0.020)  0.001 (0.011)

Range index quadratic-own -3.877 (0.580) -0.007 (0.025)  0.336 (0.142)  0.066 (0.049)

Range index quadratic-rival -1.890 (0.408)  0.209 (0.047) 2.453 (0.266)  0.222 (0.101)

Footprint-local-own 17.980 (1.185) 0.375 (0.029) 3.171 (0.158)  0.256 (0.056)

Footprint-local-rival -3.803 (0.318) 1.148 (0.054)  5.531 0.281) 0.272 (0.122)

Price-local-own -32.846 (1.038) -0.034 (0.008) -0.046 (0.042)  -0.002 (0.017)

Price-quadratic-own 0.145 (0.006) -0.841 (0.043)  -4.051 0.227) -0.212 (0.098)

Fuel efficiency-quadratic-own  -1.104 (0.676)  -0.002 (0.000)  -0.008 (0.001)  0.000 (0.000)

Fuel efficiency-quadratic-rival ~ 0.157 (0.126)  -0.278 (0.025) -1.471 (0.124)  -0.094 (0.037)

Weight-local-rival -8.544 (0.311)  0.008 (0.001)  0.049 (0.006)  -0.004 (0.003)

Firm FE X X X X

Class FE X X X X

Body FE X X X X

State FE X X X X

Year FE X X X X

SW F-Stat 178.056 88.945 40.381 34.92

Observations 28,288 28,288 28,288 28,288

Note:

This table presents first stage estimates for each of the endogenous charateristics. The Sanderson-Windmeijer multivariate F-test is
reported for each endogenous vairable.
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Table 12: Demand and marginal cost estimates

Utility Marginal Cost
Coefficient Rob. SE Coefficient Rob. SE
Mean Utility
(Intercept) -9.371 (0.375) Intercept 1.008 (0.035)
Range 1.974 (0.356) Trend -0.092 (0.008)
Range x Trend  -0.179 (0.033)
Stations 0.415 (0.084) Intercept 1.507 (0.150)
Fuel Cost -0.543 (0.038) Fuel Efficiency  -0.035 (0.006)
Footprint 0.650 (0.054) Footprint 0.082 (0.023)
Acceleration 0.348 (0.026) KW 0.005 (0.000)
Doors -0.211 (0.027) Weight 0.264 (0.042)
BEV -9.361 (2.018) BEV -0.791 (0.055)
PHEV -6.705 (1.933) PHEV 0.220 (0.024)
Own State 1.057 (0.076)
2013 -0.696 (0.040) 2013 -0.008 (0.013)
2014 -0.871 (0.041) 2014 -0.027 (0.014)
2015 -1.268 (0.058) 2015 -0.060 (0.016)
2016 -1.146 (0.060) 2016 -0.034 (0.014)
2017 -1.107 (0.057) 2017 -0.043 (0.015)
2018 -1.182 (0.060) 2018 -0.061 (0.015)
Interactions
Price / Income  -6.310 (0.620)
Standard Dev.
BHEV 2.235 (0.982)
Range 0.288 (0.367)
Fuel Cost 0.254 (0.017)
Note:

Prices deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State Fixed
Effects included.

Table 13: Station entry estimation: Robustness checks

OLS v v v v v
Log(EV base) 0.679 0.662 0.822 0.875 0.687 0.684
(0.076)  (0.132)  (0.143)  (0.466) (0.142) (0.143)
Subsidies national 0.107 0.11 0.08 0.099 0.098 0.098
(0.022)  (0.022) (0.021)  (0.027) (0.019) (0.019)
Subsidies local -0.001 0.002 -0.031 -0.02 0.029 0.029
(0.038) (0.049) (0.053) (0.04) (0.033) (0.033)
R-quared 0.943 0.943 0.94 0.94 0.882 0.882
First stage
F-stat 24.804 25305 417.469 114994 102.558
p-value 0 0 0 0 0
R-squared 0.845 0.839 0.99 0.91 0.91
Instruments
Gas station density X X X X
Gas prices X X X X
Road network X X X X X
Controls
County FE X X X X
Time trend X X X
State controls X X

Note: This table shows different specifications for the station entry equation, along with
the OLS estimate in the first column.
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Table 14: Station entry: First Stage

Dependent variable:

Log(EV Base)
Subsidies national —0.049 (0.022)
Subsidies local —0.025 (0.022)
Gas station density 0.161 0.611)
Road network length 0.010 (0.002)
Gasoline price 1.898 (0.163)
Observations 112
R? 0.910
F Statistic 102.558

Note:
This table reports the first stage for the specification used
in the paper (last column of Table[T3]
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These tables show price and range for each BEV in the sample for each year.
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Note that the Ford Focus was not offered in 2016
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C Results under simultaneous moves

This section presents results for estimation and subsidy design when assuming a simultaneous
move game. In that case, firms just best respond to the charging station side, meaning that we
fall back to the standard market share derivatives with respect to price and range. Table

Table 16: Estimation results

Demand/supply for cars Station entry
Coefficient SE Coefficient SE
Demand: Means
Range 1.974 (0.356) log(EV base) 0.684 (0.143)
Range x Trend -0.179 (0.033) National Subsidies 0.098 (0.019)
log(Charging Stations) 0.415 (0.084) Local Subsidies 0.029 (0.033)
Fuel Cost -0.543 (0.038)
BEV -9.361 (2.018)
PHEV -6.705 (1.933)
Demand: Interactions
Price / Income -6.310 (0.620)
Demand: St. Dev.
BHEV -2.235 (0.982)
Range 0.288 (0.367)
Fuel Cost -0.254 (0.017)
Supply: Range provision
Intercept 1.060 (0.038)
Trend -0.100 (0.009)
Statistics
Mean own-price elasticity -3.714
Mean own-range elasticity (BEVs) 3.201
Mean markup (BEVs) (€ 1,000) 8.308

Note: Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State
Fixed Effects included on car demand- and supply side. Linear time trend and state demographics
included on station entry side.

holds the estimation results. As outlined in Section [3] elasticities and markups change. Also,
the supply-side results change, even though we can see that they do so only slightly. We still
recover the drop in the marginal cost of providing range. Table |17| holds the results for the
grid search under simultaneous moves. Akin to Table [/, I report the subsidy schemes that
optimize different policy objectives, along with the observed scheme and the case in which
there are no subsidies. Table [17| suggests that the results are robust to using this alternative
timing assumption. Results in the simultaneous move game are similar to the ones found in
Section The exact amounts of the subsidies as well as the effects on range, prices, and
policy objectives only change slightly. Overall, the conclusions we could draw from Section

[6.3] go through.

Table 17: Comparison of subsidy schemes (simultaneous moves)

Scheme Price Range Sales Stations CO2 CS TS
0,0, 0) 46,733 302 18,546 9,306 5,199,165 51,185 74,212
(2,0,8) -12,062  -43  +16,215 +7,818  -6,960  +266  +387

(1.2,0,9.3) -5,545 21 +13,235 +10,028  -5,746  +271  +392
(3.15,0,4.7) -15864 -59 +18,953 +3,173  -7,891 +216  +318
(3.25,0,4.25) -16,146 -61 +18,995 42,673  -7,881 +207  +306

54



D Counterfactual details

This section presents details on the counterfactual procedure.

Having estimates of price and range semi-elasticities, a system of first-order conditions
(FOCs) for prices and range levels, and an estimate of the marginal cost of providing range, as
well as the charging station entry equation, I can compute the new equilibrium vectors of price
and range and the new equilibrium entry of charging stations. I employ an iterative algorithm
to find this new equilibrium (p, r, d). I proceed as follows:

1. I start with a vector of prices p', ranges ', and charging stations d'.
2. Update price and range vectors. At iteration h,

(a) Compute a new price vector using the price FOC given by equation (II). Take a
small step towards the simulated price vector: p"*! = ap* + (1 — a)p”, with «
small.

(b) Update market shares and elasticities using p"**, r”

(c) Compute a new range vector using the range FOCs given by equation (12). Take a
small step towards the simulated range vector: "1 = ar* + (1 — a)r", with «
small.

(d) Update market shares and elasticities using p"*!, r"*!

(e) Let diffy,,; = max(diff!, diff?), where diff} = max |p"*! — p"| and diff} =
max |[rh*t1 — rh|. If diff,,., > € with € being some convergence criterion, go
back to step (a). If diff,,.. < €, extract (p"*!,r"*1) to be the new equilibrium
vector of prices and range levels p'*! and 7'+

3. Update charging stations by iterating on equation (17/) until convergence. Extract the new
charging station vector d' ™.

4. Compute diffl,,, = max(diff, diff!), diff}). If diff,,,, >= €°, go back to step 2. If

max

difft < e, pltt pltt d'™ is the new equilibrium vector of prices, ranges, and charg-

ing stations.

I restrain the values that the range can take in counterfactuals. First, put a floor of 100km,
which is the lowest range I observe for BEVs throughout the sample period. Second, I bound
range from above in the following way: First, I define cy,,;, to be the lowest marginal cost of
providing range in 2018: ¢y, = minje s, Ev,zms(clj)- I then define the maximum attainable
range in 2018 for BEV j to be 74, = (log(mcj) — coj) /Cimin- 1 find that this procedure
converges to the same equilibrium vector of prices levels, range levels, and charging stations
even when I start from different starting values in different counterfactual settings. I take this
feature as a sign that there exists a unique counterfactual equilibrium. Altering the ordering of
the price and range updating does not change the results, also giving me confidence that the
counterfactual results that I find are robust to the specific details of the algorithm and different
starting values. The fact that firms choose only the range of BEVs means that the number of
additional FOC:s to iterate in addition to the price FOCs is small. This factor contributes to the
good convergence properties of the algorithms. I perform all counterfactuals for 2018.
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E The role of internalizing spillovers on price and range choices

In the estimation of the model, I find that ignoring indirect network effects leads to markups
that are 19% higher on average and that BEVs act as complements in both price and range. In
the first set of counterfactuals that I perform I take a closer look at the relationship between
indirect network effects and firms’ price and range choices. In particular, I am interested in
how the complementarity between BEVs affects market outcomes. I consider two scenarios. In
the first scenario, I assume firms do not internalize the effect of their price and range choices on
any other EV, not even the EVs in their product portfolio This scenario amounts to modifying
the matrices A, and AP in equations and . Specifically, I set each entry (7, k), j # k
in and to zero if row 5 and row k correspond to an EV. Note that doing so is different
from assuming single-product firms as firms still internalize diverted sales towards own-firm
combustion cars. In the second scenario, I assume firms internalize the effects of their price
and range decisions on all other EVs in the market.This scenario also amounts to modifying
the matrices A, and AP in equations and . Specifically, I set each entry (j, k) in
and to one if row j and row k correspond to an EV. Note that doing so is different
from assuming a complete merger to monopoly in the car market as firms still only internalize
diverted sales towards own-firm combustion cars and not towards combustion cars produced by
other firms. Given the vast majority of new car sales still comes from combustion cars in 2018,
assuming a full merger to monopoly would likely entail large coordinated effects that would
pollute the effect of merely assuming full internalization on rival firm EVs.

Table 18: Market outcomes with different market structures

Data No internalization Full internalization

Price 34,671 +4,479 -7,843
(-960, +9,563) (-14,690, -522)
Range 259 +16 -40
(-5, +48) (-159,-12)
MC 22,570 +2,540 -3,770
(-1,037, +6,261) (-8,575,-241)
Markup 8,152 +3,645 -1,407
(+1,650, +5,145) (-3,397, +2,223)
Sales 34,761 -2,529 +16,431
(-7,141, +1,194) (+4,946, +42,157)
Stations 17,124 -258 +1,381
(-3,062, +5,029) (-1,609, +8,245)
Consumer surplus 51,451 -40 +198
(-3,109, +6,680) (-2,849, +7,044)
CO2 emissions 5,192,205 +647 -4,469
(-1,472,+2,772) (-11,675,-574)

Note: Table gives differences to observed outcomes with 90% C.I. in parentheses. Prices, range
levels, marginal costs, markups, and sales are mean values across BEVs.

The results are in Table[I8l We can see that in the scenario in which firms do not internalize
the effect of their price and range choices on any other EV (column ”No internalization”), BEV's
would on average be more expensive and have a higher range. Sales of BEVs would be lower
and fewer charging stations would enter. These results suggest that complementarities in price
and range choices lead to BEVs that are cheaper, but also have a slightly lower range. These
cheaper, lower-range BEVs generate a large number of extra sales and also spur charging station
entry. On the other hand, we can see in the last column that when firms internalize the effect of
their price and range choices on all other EVs in the market, BEV's are on average substantially
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cheaper and have a much lower range. However, these cheap, low-range BEVs generate large
additional sales and strong charging station entry. Overall, consumer surplus would increase by
around € 200 million in this case. However, much of the increase in consumer surplus comes
from increased substitution from the outside option. The rest of the consumer surplus increase
comes from the fact that EVs become substantially cheaper, and the fact that there are more
charging stations available. Interestingly, firms have an incentive to reduce the range of their
cars when internalizing indirect network effects. One reason for this may be that consumers
have a relatively low willingness to pay for range. Another reason is the indirect network
effects at play: Reducing the price of BEVs induces more charging station entry. This increase
in charging stations makes it possible for firms to reduce range and generate additional sales
by further reducing the price. The indirect network effects strengthen the incentives of firms to
reduce price and range.

F Alternative model with range-charging station interaction

This section presents an alternative version of the demand and supply model where I allow for
an interaction term between EV driving range and charging stations. In order to identify this
interaction term, I include the natural logarithm of range (measured in km) in the demand. In
particular, the utility that consumer ¢ enjoys from purchasing one of the products j = 1,...,J
is

WUijmt = /szBEVJ + BYPHEV; + ("log(r;:) + Bdlog(djmt) + Brdlog(rjt)log(djmt)

J/

NV
only EVs

DPjt -
—a—— + Tju 5] + Emt + Eijme,

imt
>

alltars
Note that while range and charging stations are likely to be substitutes to some extent, the
ultimate extent to which this is the case will depend on an individual’s driving needs, their
home and/or work place charging availability, and other factors. Including an interaction term
between range and charging stations is hence a rather crude way of capturing the interactions
between these two variables.

The estimation results in Table [19|suggest that range and charging stations are substitutes,
with the valuation of range being a decreasing function of the number of charging stations
and vice versa. Introducing the log of charging stations has implications for the first-order
conditions, and the estimates of ¢y, the term pre-multiplying range in the marginal cost function,
because the level of range is now measured in kilometers instead of 100 kilometers. I obtain
similar estimates of the marginal cost of providing range, however.

In Table 20| we see that the trade-off between maximizing EV sales, maximizing consumer
and total surplus, and minimizing CO2 emissions persists. In fact, now there is even a trade-off
to be made between maximizing consumer surplus and maximizing total surplus, even though
the consumer-surplus maximizing scheme comes close to maximizing total surplus. There are
slight changes to the type of subsidy schemes that optimize different policy goals. Instead of
focusing on subsidizing charging station entry, consumers now prefer a scheme that balances
incentivizing charging station entry and incentivizing range provision. The EV salesmaximiz-
ing scheme looks very similar to the one in the main specification with the policymaker having
an incentive to focus most spending on flat purchase subsidies. To minimize CO2 emissions,
the policymaker should increase the flat part of the purchase subsidy, decrease the charging sta-
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Table 19: Estimation results with interaction

Demand/supply for cars Station entry
Coefficient SE Coefficient SE
Demand: Means
log(Range) 1.590 (0.257) log(EV base) 0.684 (0.143)
log(Charging Stations) 0.590 (0.228) National Subsidies 0.098 (0.019)
log(Range) x log(Charging Stations) -0.098 (0.043) Local Subsidies 0.029 (0.033)
Fuel Cost -0.572 (0.038)
BEV -11.550 (4.081)
PHEV -9.590 (4.018)
Demand: Interactions
Price / Income -5.604 (0.529)
Demand: St. Dev.
BHEV -0.986 (3.261)
Fuel Cost 0.265 (0.017)
Supply: Range provision
Intercept 0.0050 (0.0003)
Trend -0.0063 (0.0001)
Note:
Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State Fixed Effects
included.

Table 20: Comparison of subsidy schemes: range-station interaction

Scheme Price  Range Sales Stations CO2 CS TS
0,0,0) 38,078 279 26,302 9,329 5,196,096 55,406 79,771
2,0,8) -3,408 -20 +8,459 47,795 -3,891 +147 4211

(1.65,0.5,5.75) -4,321 -20 +11,327 +4,533 -5,149 +158  +228
(245,02,54) -4394 -19 +11,674 +4,094 -5,268 +157  +228
(3.25,0.05,2.2) -4,676 -14 12,827  +891 -5,698 +143  +209
(34,0, 1.55) -4,668 -14 12,836  +503 -5,682 +139  +204

tion subsidy, and put small incentives on range provision. Again, this scheme looks very similar
to before with the exception that it contains both charging station subsidies and a small range-
based subsidy. Overall, price and range distortions are less strong compared to the model in the
main part of the paper. This is because shifting spending to purchase subsidies reduces charg-
ing station entry, which increases consumers’ willingness to pay for range and hence increases
firms’ incentives to provide it, limiting the scope for large range reductions and accompanying
price reductions.

G Robustness to alternative corrections

Table 21 shows estimates of key demand parameters under different corrections for observa-
tions with zero market shares. The column Min bias holds the results from the correction
employed in the paper that follows D’Haultfceuille et al.| (2019). The second column (Laplace)
uses a correction based on Laplace’s rule of succession that is used in (Gandhi, Lu, and Shi
(2013)). It consists of replacing market shares by s;,,,; = %, with J,,,; the number
of products in market m¢t. Finally, column 3 (Naive) uses a naive correction where quantities of
zero sales observations are assumed to be 1. We can see that the estimates barely differ across
the different corrections, leading me to conclude that the prevalence of zero sales do not pose a

serious threat in my estimation.
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Table 21: Estimates of key parameters under alternative corrections for zero market shares

Min bias Laplace Naive

Mean Utility
Range 1.974 2.026  2.165
(0.356) (0.326) (0.347)
Range x Trend -0.179  -0.168 -0.175

(0.033) (0.031) (0.033)
Charging Stations  0.415 0.370 0412
(0.084)  (0.077) (0.081)

Fuel Cost -0.543 -0.543  -0.572
(0.038)  (0.036) (0.039)
BEV -9.361 -9.407 -10.275
(2.018) (1.890) (1.973)
PHEV -6.705 -6.739  -7.378
(1.933)  (1.799) (1.865)
Interactions
Price / Income -6.310 -6.664  -7.198
(0.620) (0.584) (0.647)
Standard Dev.
BHEV 2.235 2.462 2.608
(0.982) (0.869) (0.878)
Range 0.288 0.286  0.300
(0.367)  (0.352) (0.365)
Fuel Cost 0.254 0.258 0.270

0.017)  (0.016) (0.017)

Note: Standard errors in parentheses.

H Estimated price elasticities in selected papers

Table 22] presents estimates of price elasticities from several papers using a similar structural
model of demand to mine.

Table 22: Estimated price elasticities of selected papers

Author(s) Price elasticity

Beresteanu and Li/(2011)  -10.91

Berry et al.| (1995)1 -3.928
Berry et al.|(1995)2 -3.461
Li|(2023) -2.732
Klier and Linn|(2012) -2.6
Pavan|(2017) -2.85

Reynaert and Sallee|(2021) -5.45
Springel| (2021)3 [-1,-1.5]
Thurk|(2018) -3.6

Own estimated price elasticity: -3.714
1|Conlon and Gortmaker| (2020) replica-
tion

2|Conlon and Gortmaker] (2020) own pro-
cedure

3 Range of elasticities for EVs
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I A model of quality provision

I.1 Monopoly

In this section, I outline a model of quality provision by a monopolist. This model helps
to understand the forces that determine how price and quality adjust to the introduction of a
subsidy or a decrease in the marginal cost of quality provision. Note that what I call quality in
this model can, in principle, be any product characteristics, such as driving range.

Set-up

Let us consider a monopolist who chooses price (p) and quality (q) of a single product sold
to final consumers In my application, ¢ would be the driving range of a car. The demand
function s(p, q) is increasing in quality, decreasing in price, and twice differentiable. Cost is
an increasing function of quality and is denoted c¢(q)s(p,q). A social planner subsidizes the
product with a subsidy denoted by A, possibly to increase the diffusion of the product. This
scheme mirrors the type of subsidy for electric vehicles employed in countries such as Germany.

Quality choice

The monopolist maximizes its total profits given by 7(p, ¢). His optimization problem is given
by

max7(p,q) = (p+A—c(q)) s(p, )

and the first-order conditions of the monopolist are given by

bl 7 =s(pg)+ (p+A— )=

)
N
[}
|
|
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+
>
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For the price, we recover the standard optimal markup formula. For quality, the formula looks
similar. The firm faces a trade-off: It can increase quality to expand sales. However, doing so is
costly and leads to a smaller margin. To see how the monopolist chooses quality in equilibrium,
we can plug the price FOC into the quality FOC and re-arrange to find

ds(p,q)/0q

Cqg= T, 1)
* |9s(p,q)/p|
where ¢, is the marginal cost of providing quality ag—(q‘]) The monopolist sets quality such that the

marginal cost of providing quality is equal to the absolute value of the ratio of semi-elasticities
of quality and price. The larger the fraction on the right-hand side of equation (1)), the larger
the level of quality provided in equilibrium.

32The set-up slightly differs from|Spence|(1975) and|Sheshinski|(1976) where the monopolist’s choice variables
are quality and quantity.
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The effect of a subsidy

What happens when the policymaker introduces a subsidy? If quality cannot adjust, we expect
the monopolist to pass on the subsidy by lowering the price. The extend of this pass-through
depends on the curvature of the demand curve. The more elastic the demand curve, the higher
the amount of pass-through. If both the price and quality can adjust, there is no clear-cut answer
to how the monopolist will react. Differentiating the system of first—order conditions gives

d -1
Y
ﬁ Tpg  Tqq g
where 7,,,, denotes the second order derivative of the monopolist’s profit function respect to m
and n, with m, n € {p, ¢} and where

Tpp = 28p + Spp(P+ A — c)
Taq = —CqqS — 2C48q + S¢¢(P + A — €)
Tpg = Sq + (P + X —€)spg — C45p

Tpx = Sp, Tgx = Sq-
This gives

dp 1

i = A (quﬂ'qx\ - 7qu77p/\>
dg 1

5 = A (quﬂ'p/\ - prﬂqk)?

where A = 7., — w2, > 0 from the second order conditions of having a global maximum.
The SOCs further require 7,, < 0 and 7y, < 0. Note that we also have 7,5, < 0 and 7, > 0.
dp

If m,, < 0, meaning price and quality are strategic substitutes, we have ;& < 0 and g—f’\ > 0.

In the case where m,, > 0, things become more ambiguous. Note that we can write

dp 1

i = A <7qu3<1 - 7qu5p>
dq 1

i = A <7rpq3p - 7rpp3q)7

We can then conclude that

si n<@>—si n< Sa|_ |2 )
£ a\) £ Tqq Tpq
. (dgy Sp Sq )
s1gn<d>\> - s1gn< Tpp Tpq

The effect of a subsidy on quality and price depends on the relative magnitudes of the price and
quality semi-elasticities, s, and s,, and the marginal cost of providing quality c,. Moreover,
we can rule out the case 7,5, > 0 and 7,y < 0. To see see why, note that this case would imply

% < Z—q < :ﬂ which violates the second order conditions.
pp p pq
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I.2 Multi-product oligopoly

In this section I show how the main insights obtained in the monopoly case generalize to a
multi-product oligopoly setting. The fact that there are cannibalization effects within a firm’s
product portfolio and the fact that products are differentiated within and across the product
portfolio will influence the effect of a subsidy on price and quality but not alter the main con-
clusions. To see why, let us consider the following setting: There are j = 1,....J products
in a market. Consumers care about the quality of a subset of products 7 € B and do not have
any preferences over the quality of the remaining products 7 € Z°| The social planner puts a
subsidy on products in 3 but not on those in Z. Let us look at the firm f’s profit maximization
problem:

max 7y = Z (pk + A — c(qr))sk(p, q) + Z (o0 = c(@r))si(p; q),

pf.q
A keJ;NkeB leJynkeT

where p; and ¢; denote the own-firm vectors of price and quality, respectively, p and ¢ the price
and quality vectors of all firms in the market and J the portfolio of firm- f products. The FOCs
for product one are then given by

[p1l: 7 =
OSk 0sy
sit Y (P + A — e(gi) 52 + > (—cl@)5— =0
k€T Nk Op1 Op1
snkeB leJ;NkeT
) 7pq =
aSk 881
— Cps1 T+ Z (pr + A = claw)) + Z (p1 — 8 =0
keJ;NkeB leJpnkeT «

The second-order derivatives of the profit function will depend not only on the effect of own
price and quality on own demand, but also on the demand of the other own-firm products.
Finally, they depend on rival product prices and quantities through the demand function.

Increase of subsidy for a single product

In the case where the subsidy is only increased for a single product product, say product 1, we
get

dp1 1
A\ - A (Wfp1q17rfq1>\ - 7Tf(I1q17TfP1>\>
dql 1
N = A (Wfplthﬂfpl/\ - Wfplplﬂ—ﬂh)\)v
meaning that the general results from the previous section go through: The signs of %\1, %f

depend on whether p, g are strategic substitutes or complements. They also still depend on the
marginal cost of providing quality as well as the relative magnitudes of 7y, \ and 74, that
themselves still depend on s, and s,.

3Think of the market for cars: The range of electric cars is a proxy for quality and costly to provide. Consumers
do not care about the range of diesel or gasoline cars as it is sufficiently high and firms do not give it first-order
importance when making their strategic decisions.
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Increase in the subsidy for all products in B

Things become more complicated when we consider an increase on the subsidy of all products
in B. We now need to differentiate .J + Jj first—order conditions (.Jz being the cardinality of
B). In essence, the effect of price and quality on the FOC of all other products now needs to be
taken into account as well.
Let J denote the cardinality of all products, Jz the cardinality of those products with endoge-
nous quality and f(j) the firm of product j. Then, we have the following system of FOCs with
J + J, equations:

0y

Js

l
1l Tryp, =51+ Z (Pk“r)\—ck)ai-l- Z (pl—cl)aiz(]
k€Tp)nkeB PL iegiqyniez P
s s
ok mpp, =sst D0 etA-a)g 4 3D (—a)y— =0
k€Tf(1yNkeB pJ LT s(1yNIET PJ
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[l 7 = —ensit > GeFA-a)sEa 3 (i—a)pt =0
k€T p(1)NkEB €T (1ynIeT o

0sp 0sy
[975): Tf(s)as, = ~Casy 575 T > (pk'f‘)\—ck)aq] + > (Pl—Cl)aqi =0
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The total differentiation of this system yields
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It is no longer possible to simply pin down the effects of the subsidy on whether or not p, ¢
are strategic complements, nor on the relative magnitudes of 7y, » and 7, » and the marginal
cost of providing quality. First off however, the entries 7y, and 7y, in the matrix to be
inverted in [22| are likely to dominate the entries 7y, and 74,4, , k # j. Hence the signs and
magnitudes of these own second-order derivatives will play an important role in determining the
effect of the subsidy. Secondly, the system in[22] while too opaque to be solved analytically, can
be solved numerically if estimated profits and semi-elasticities can be recovered and prices as
well as qualities are known. I can do so in my empirical setting below. In principle, this system
can also be obtained to measure pass-through of a change in marginal cost. The difference is
then that the system of first-order conditions will be differentiated with respect to the change
in marginal cost. Finally, the case where several multi-product firms produce products with
endogenous quality that are subsidized and products with fixed quality that are not subsidized.
Note that a similar system can be obtained to analyze pass-through of a shock to the marginal
cost of providing quality.
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