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A Proofs

Proof of Theorem 1 (i) comes from the convergence of Γ̂I to ΓI with respect to the

Hausdorff distance. (ii) comes from Shapiro et al. (2014), Theorem 5.11, p.193. The

uniformity in q for both (i) and (ii) comes from the compactness of the unit ball and the

identified set. �

Proof of Theorem 2 (i) comes from the convergence of Γ̂αI to ΓαI with respect to the

Hausdorff distance. (ii) comes from Shapiro et al. (2014), Theorem 5.11, p.193 combined

with the Delta method for the asymptotic variance of the estimated constraints. As a

matter of fact, denoting br = E(Zr,mBm) and ar = E(Zr,mAm), for r = 1, . . . ,R, we have

∂gα
∂br

(γ) =
γ exp

(
α
[
b>r γ − ar

])
1 + exp (α [b>r γ − ar])

=
γ

1 + exp (−α [b>r γ − ar])
,

∂gα
∂ar

(γ) =
−1

1 + exp (−α [b>r γ − ar])
.
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Therefore:

√
M(ĝα(γ)− gα(γ)) =

R∑
r=1

√
M
(

(b̂r − br)>γ − (âr − ar)
)

1 + exp (−α [b>r γ − ar])
+ oP (1),

=
R∑
r=1

Wr(γ)

1 + exp (−α [b>r γ − ar])
+ oP (1).

The uniformity in q comes from the compactness of the unit ball. �

B Existence of Nash equilibrium networks

As discussed in Section 3.3 of the main paper, proving the existence of a pure strategy

Nash equilibrium (PSNE) G := (Gf : f ∈ N ) is difficult due to the presence of spillovers

from entry across markets on the demand, marginal cost and fixed cost sides.

Berry (1992)establishes the existence of a PSNE in one of the first empirical models

of entry that incorporates strategic interactions between firms in the second-stage pricing

game. His proof relies on the assumption that the entry decisions are independent across

markets. It is therefore not applicable to our framework. Another approach used in the

network formation literature to show the existence of a PSNE is to represent the model

as a potential game (Monderer and Shapley, 1996). This is possible if the payoff function

is additive separable in the linking decisions and linear in the spillovers (as for example in

Mele, 2017), which is not the case here. Alternatively, it is possible to show the existence

of a PSNE under the assumption that the game is supermodular, in order to exploit the

fixed point theorem for isotone mappings (Topkis, 1979). However, supermodularity does

not hold in our setting due to the second-stage competition between airlines. Finally, one

could try to decompose the original game into “local” games such that the original game

is in equilibrium if and only if each local game is in equilibrium (Gualdani, 2021). In

turn, the existence of a PSNE in each local game - which is typically easier to establish

- is sufficient for the existence of a PSNE in the original game. However, the classes of

spillovers considered in our model do not allow us to implement such a decomposition.

One might also ask whether allowing for private fixed cost shocks could simplify the

existence proof. Esṕın-Sánchez et al. (2021) prove equilibrium existence in an entry model

where firms have some private information at the entry stage. However, they do not allow

for multi-product firms and they do not allow for spillovers from entry across markets.

Moreover, in our setting it is more reasonable to assume that the fixed cost shocks are

common knowledge among airlines, as discussed in Section 3.2 of the main paper.

Note that the moment inequalities in Section 4.2 of the main paper are based on

necessary conditions for PSNE. Therefore, one could consider a first-stage equilibrium

notion that is weaker than PSNE. In particular, given our focus on one-link deviations,
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inequalities (10) and (11) resemble the notion of pairwise stability used in network theory,

according to which no player has profitable deviations by adding or removing a link

(Jackson and Wolinsky, 1996). Definition 1 introduces a notion of first-stage equilibrium

along the lines of pairwise stability.

Definition 1. (Pairwise Stability) The networks G1, . . . , GN represent a pairwise stable

outcome if, for each market {a, b} ∈ M and airline f ∈ N , it holds that

Gab,f = 0⇒ Πe
f (Gf , G−f ; θ)− Πe

f (G(+ab),f , G−f ; θ) + γ2,f∆Q(+ab),f + γ1,f + ηab,f ≥ 0,

Gab,f = 1⇒ Πe
f (Gf , G−f ; θ)− Πe

f (G(−ab),f , G−f ; θ)− γ2,f∆Q(−ab),f − γ1,f − ηab,f ≥ 0.

�

In the absence of ties (it is sufficient that the fixed cost shocks have a continuous

distribution), Definition 1 can be rewritten as a simultaneous equation model.

Lemma 1. (Equivalent representation of pairwise stability) In the absence of ties, the

networks G1, . . . , GN represent a pairwise stable outcome if and only if:

Gab,f = 1{Πe
f (Gf , G−f ; θ)− Πe

f (G(−ab),f , G−f ; θ)− γ2,f∆Q(−ab),f − γ1,f − ηab,f ≥ 0},

∀{a, b} ∈ M,∀f ∈ N .
(B.1)

�

See Menzel (2017) or Sheng (2020) for a proof of Lemma B.1. Note that although

pairwise stability is a weaker equilibrium notion than PSNE, establishing the existence

of a pairwise stable outcome does not appear to be easier in our setting. In particular,

according to Jackson and Watts (2002), for any payoff function there is either a pairwise

stable outcome or a closed cycle.1 A typical way used in the literature to exclude the

presence of closed cycles is to show that the model can be represented as a potential game,

as discussed by Jackson and Watts (2001) and Hellmann (2013). As before, however, this

is possible if the payoff function is additive separable in the link decisions and linear in

the spillovers (as in Sheng, 2020), which is not our case.

C How to deal with incoherence

In Section 4.2 of the main paper, we have constructed the identified set for the first-stage

parameters under the assumption that PSNE networks exist for each parameter value

and variable realisation. As discussed above, proving the existence of PSNE networks is

difficult. Therefore, it is legitimate to wonder whether one should modify the definition

1A closed cycle represents a situation in which individuals never reach a stable state and constantly
alternate between forming and severing links.
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of the identified set when non-existence is possible, i.e., when our model is incoherent in

the terminology of Tamer (2003) and Lewbel (2007).

To explain how we deal with incoherence, we first report here the moment inequalities

predicted by our model as derived in Section 4.2 of the main paper:

EPr

[
Zr,(−ab),f ×Gab,f ×

(
Πe
f (Gf , G−f ; θ)−Πe

f (G−ab,f , G−f ; θ)−
(
γ2,f∆Q(−ab),f + γ1,f

)) ]
≥ 0,

r = 1, . . . ,R−,

EPr

[
Zr,(+ab),f × (1−Gab,f )×

(
γ2,f∆Q(+ab),f + γ1,f −

(
Πe
f (G(+ab),f , G−f ; θ)−Πe

f (Gf , G−f ; θ)
)) ]
≥ 0,

r = 1, . . . ,R+,

(C.1)

where EPr is the expectation operator based on the probability function Pr associated

with the probability space where the random variables of the model are defined. Second,

to simplify the exposition, we focus on one moment inequality from (C.1):

EPr

[
Zr,(−ab),f ×Gab,f ×

(
Πe

f (Gf , G−f ; θ)−Πe
f (G−ab,f , G−f ; θ)−

(
γ2,f∆Q(−ab),f + γ1,f

)) ]
≥ 0.

(C.2)

Third, we streamline the notation of (C.2) as:

EPr(GmÃm)− EPr(GmB̃
>
m)γ ≥ 0, (C.3)

where the subscripts f and r are omitted, m is a market {a, b}, Ãm is Zr,(−ab),f (Π
e
f (Gf , G−f ; θ)−

Πe
f (G−ab,f , G−f ; θ)), B̃m is such that B̃>mγ is equal to Zr,(−ab),f (∆Q(−ab),fγ2,f + γ1,f ).

Let P be the distribution of (GmÃm, GmB̃m) identified by the sampling process. If

the set of PSNE networks is non-empty for each parameter value and variable realisation,

then we can replace EPr with EP in (C.3) and obtain the identified set for γ associated

with P:

ΓI :=
{
γ ∈ Γ : EP(GmÃm)− EP(GmB̃

>
m)γ ≥ 0

}
. (C.4)

If the set of PSNE networks is empty for some parameter values and variable realisations,

then the relationship between P and Pr is not completely defined because our model is

silent about the realisations of (GmÃm, GmB̃m) when the set of PSNE networks is empty.

Since non-existence outcomes are never observed in our data, we approach the incoherence

problem by assuming that the data are drawn from the subset of the sample space in

which the set of PSNE networks is non-empty. That is, P comes from a truncated version

of Pr, as discussed in Section 4.2 of Chesher and Rosen (2020). In what follows, we show

that the identified set for γ associated with P is still defined by (C.4).

For ease of explanation, let us assume that Ãm and B̃m are discrete random variables.

Given γ ∈ γI , our model predicts that∑
a∈A

a× Pr(Ãm = a,Gm = 1)−
∑
b∈B

b> × Pr(B̃m = b,Gm = 1)× γ ≥ 0, (C.5)
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where A and B are the supports of Ãm and B̃m, respectively. Let Sθ,γ(X⊕,W⊕,MS, η) be

the random closed set of PSNE networks.2 If our model is correctly specified, then the

observed realisation of G is associated with realisations of X⊕,W⊕,MS, η from the trun-

cated support {(x⊕, w⊕,ms, η̄) ∈ SuppX⊕,W⊕,MS,η : Sθ,γ(x⊕, w⊕,ms, η̄) 6= ∅}. Therefore,

it holds that:

P(Ãm = a,Gm = 1) = Pr(Ãm = a,Gm = 1|Sθ,γ(X⊕,W⊕,MS, η) 6= ∅)

=
Pr(Ãm = a,Gm = 1,Sθ,γ(X⊕,W⊕,MS, η) 6= ∅)

Pr(Sθ,γ(X⊕,W⊕,MS, η) 6= ∅)
=

Pr(Ãm = a,Gm = 1)

Pr(Sθ,γ(X⊕,W⊕,MS, η) 6= ∅)
.

(C.6)

In turn, we can write:

Pr(Ãm = a,Gm = 1) = P(Ãm = a,Gm = 1)× Pr(Sθ,γ(X⊕,W⊕,MS, η) 6= ∅),

Pr(B̃m = b,Gm = 1) = P(B̃m = b,Gm = 1)× Pr(Sθ,γ(X⊕,W⊕,MS, η) 6= ∅).
(C.7)

We plug (C.7) in (C.5) and obtain:

Pr(Sθ,γ(X⊕,W⊕,MS, η) 6= ∅)× [EP(GmÃm)− EP(GmB̃
>
m)γ] ≥ 0, (C.8)

which is equivalent to

EP(GmÃm)− EP(GmB̃
>
m)γ ≥ 0. (C.9)

Hence, the identified set associated with P is:

ΓI :=
{
γ ∈ Γ : EP(GmÃm)− EP(GmB̃

>
m)γ ≥ 0

}
, (C.10)

as in (C.4).

D Computing the first-stage moment inequalities

We provide some directions on how to compute Πe
f (G(+ab),f , G−f ; θ)−Πe

f (Gf , G−f ; θ) and

FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ) entering (10). A similar procedure can be followed

to compute (11).

First, we compute FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ). If none of cities a and b are

firm f ’s hubs, then FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ) = γ1,f + ηab,f . If only city a

(resp. b) is one of firm f ’s hubs, then FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ) = γ1,f +

γ2,f × ((Da,f +1)2−D2
a,f )+ηab,f (resp. FCf (G(+ab),f , ηf ; γ)−FCf (Gf , ηf ; γ = γ1,f +γ2,f ×

((Db,f +1)2−D2
b,f )+ηab,f ), where Da,f (resp. Db,f ) is the number of spokes of hub a (resp.

b). If both cities a and b are firm f ’s hubs, then FCf (G(+ab),f , ηf ; γ) − FCf (Gf , ηf ; γ) =

2For the formal definition of a random closed set, see Molchanov and Molinari (2018) and Molinari
(2020).
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γ1,f + γ2,f × ((Da,f + 1)2 −D2
a,f ) + γ2,f × ((Db,f + 1)2 −D2

b,f ).

Second, we determine the realisations of the second-stage shocks used to evaluate

the airlines’ expected variable profits. In particular, from the vector of second-stage

estimates, θ̂, we compute the second-stage shocks for each product offered using the BLP

inversion. For each airline f , we compute the mean and variance of the second-stage

shocks just obtained and denote them by µf and Σf respectively. For each potential

product of each airline f , we take 100 random draws from a normal distribution with

mean µf and variance Σf . We store all such draws in a matrix Ξ.

Third, we compute the expected variable profits of airline f under (G(+ab),f , G−f ).

To do so, we update the list of products offered by firm f , by adding direct flights

between cities a and b. Further, note that setting Gab,f = 1 creates a “domino effect”

in neighbouring markets, due to the possibility for airline f to offer one-stop flights and

the presence of spillovers in entry across markets. Specifically, if a is one of firm f ’s

hubs, then we add one-stop flights, via a, between b and all cities d such that Gda,f = 1.

Similarly, if b is one of firm f ’s hubs, then we add one-stop flights, via b, between a and all

cities d such that Gdb,f = 1. We update the matrices of product covariates by including

the observed demand and marginal cost shifters of the new products. We also update the

covariates (namely, “Nonstop Origin” and “Connections”) of the pre-existing products

that are affected by the new products. LetMab,f be the list of markets containing either

new products or products with modified covariates. For each market m ∈ Mab,f , we let

the firms reoptimise their prices by iterating on the F.O.C.s in (4), for every draw of the

second-stage shocks stored in the matrix Ξ.3 We compute the variable profits of airline f ,

average across draws, and get the simulated expected variable profits of airline f , which we

denote by
∑

m∈Mab,f
Πe
f,m(G(+ab),f , G−f ; θ). We implement a similar procedure to compute

the expected variable profits of airline f in each markets m ∈ Mab,f under G, which

we denote by
∑

m∈Mab,f
Πe
f,m(Gf , G−f ; θ). Lastly, we calculate Πe

f (G(+ab),f , G−f ; θ) −
Πe
f (Gf , G−f ; θ) =

∑
m∈Mab,f

Πe
f,m(G(+ab),f , G−f ; θ)−

∑
m∈Mab,f

Πe
f,m(Gf , G−f ; θ).

E Bounds under many-link deviations

In this section, we show that many-link deviations do not provide a substantial improve-

ment in the bounds. In particular, we show that two-link deviations generate many

redundant inequalities compared to those generated by the one-link deviations.

3We have decided to use the F.O.C.s in (4) as a contraction mapping. While we do not formally prove
that (4) is indeed a contraction mapping, we have found that the resulting price vector does not change
when starting from different values and that the mapping converges in all the cases considered.
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Adding links to the factual network

Consider markets {a, b} and {c, d} that are not served by airline f with direct flights (i.e.,

Gab,f = Gcd,f = 0). From the revealed preference principle, it holds that

Πe
f (G(+ab),f , G−f ; θ)− Πe

f (Gf , G−f ; θ) ≤ FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ), (E.1)

Πe
f (G(+cd),f , G−f ; θ)− Πe

f (Gf , G−f ; θ) ≤ FCf (G(+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ), (E.2)

Πe
f (G(+ab,+cd),f , G−f ; θ)− Πe

f (Gf , G−f ; θ) ≤ FCf (G(+ab,+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ).

(E.3)

(E.1) and (E.2) are taken into account by our identification methodology, as they refer to

one-link deviations. (E.3) is ignored by our identification methodology, as it refers to a

two-link deviation. In what follows, we show that if markets {a, b} and {c, d} are non-hub

markets for airline f and have no cities in common, or they share a hub endpoint, then

(E.1) and (E.2) imply (E.3). Hence, (E.3) is redundant.

First, consider the case where markets {a, b} and {c, d} are non-hub markets for airline

f and have no cities in common. Given our fixed cost equation, it holds that

FCf (G(+ab,+cd),f , ηf ; γ)− FCf (G(+cd),f , ηf ; γ) = FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ).

Therefore, the right-hand-side of (E.3) is equal to

FCf (G(+ab,+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ) =FCf (G(+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ)

+ FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ).

(E.4)

Observe that the left-hand-side of (E.3) can be rewritten as

Πe
f (G(+ab,+cd),f , G−f ; θ)− Πe

f (G(+cd),f , G−f ; θ) + Πe
f (G(+cd),f , G−f ; θ)− Πe

f (Gf , G−f ; θ).

Furthermore, from our second-stage estimates, it generally holds that

Πe
f (G(+ab,+cd),f , G−f ; θ)− Πe

f (G(+cd),f , G−f ; θ) ≤ Πe
f (G(+ab),f , G−f ; θ)− Πe

f (Gf , G−f ; θ).

(E.5)

In other words, adding an independent edge {a, b} to the counterfactual network G(+cd),f

does not tend to generate more expected variable profits than adding it to the actual

network Gf . In fact, adding {a, b} to G(+cd),f increases expected variable profits due

to two effects. First, the demand in market {a, b} increases because the passengers of

market {a, b} can now fly directly between a and b instead of flying through a hub of

f which is neither c nor d (recall the variable “Indirect” entering the demand function).

Second, the demand in markets having a or b as endpoints is increased by adding the
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direct service between a and b (recall the variable “Nonstop Origin” entering the demand

function). From Table 2 (demand panel) we can see that the first effect dominates the

second: flying direct increases utility by 1.794; adding one direct connection increases

utility by 0.00868. In turn, through (E.1), (E.2) and (E.5), we see that

Πe
f (G(+ab,+cd),f , G−f ; θ)− Πe

f (G(+cd),f , G−f ; θ) + Πe
f (G(+cd),f , G−f ; θ)− Πe

f (Gf , G−f ; θ)

≤ FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ) + FCf (G(+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ).

(E.6)

Hence, by combining (E.4) and (E.6), (E.3) is verified.

Second, consider the case where markets {a, b} and {c, d} share a hub endpoint. For

instance suppose a = c and a is a hub. Then,

FCf (G(+ab,+cd),f , ηf ; γ)−FCf (Gf , ηf ; γ)

=FCf (G(+ab),f , ηf ; γ)− FCf (Gf , ηf ; γ)

+FCf (G(+cd),f , ηf ; γ)− FCf (Gf , ηf ; γ)

+γ2(2Da,f + 3),

where Da,f is the number of hub a’s spokes in the factual network Gf (mean 20 in the

dataset). Again, given our second-stage estimates, it generally holds that

(
Πe
f (G(+ab,+cd),f , G−f ; θ)− Πe

f (G(+cd),f , G−f ; θ)
)
−
(
Πe
f (G(+ab),f , G−f ; θ)− Πe

f (Gf , G−f ; θ)
)

is small, compared to γ2(2Da,f + 3). (E.5) is not always satisfied because adding {a, b}
and {a, d} creates opportunities to fly from b to d via a. However, in our data, it is

always possible to fly from b to d via other hubs in the factual network for the same

airline f . As a result, it is reasonable to believe that (E.5) holds for most, if not all,

two-link deviations. Therefore, using the same steps as above, we conclude that (E.3)

holds.

Removing links from the factual network

Consider the mirror case where markets {a, b} and {c, d} are served by airline f with

direct flights (i.e. Gab,f = Gcd,f = 1). From the revealed preference principle we can see

that

Πe
f (Gf , G−f ; θ)− Πe

f (G(−ab),f , G−f ; θ) ≥ FCf (Gf , ηf ; γ)− FCf (G(−ab),f , ηf ; γ), (E.7)

Πe
f (Gf , G−f ; θ)− Πe

f (G(−cd),f , G−f ; θ) ≥ FCf (Gf , ηf ; γ)− FCf (G(−cd),f , ηf ; γ), (E.8)

Πe
f (Gf , G−f ; θ)− Πe

f (G(−ab,−cd),f , G−f ; θ) ≥ FCf (Gf , ηf ; γ)− FCf (G(−ab,−cd),f , ηf ; γ).

(E.9)
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(E.7) and (E.8) are taken into account by our identification methodology, as they refer

to one-link deviations. (E.9) is ignored by our identification methodology, as it refers to

a two-link deviation. By following the steps above, it is possible to show that, in most of

the cases, (E.9) is redundant.

F Inference on the demand and supply parameters

We conduct inference on θ via GMM under the assumption that the number of markets

goes to infinity. Formally, we consider the moment conditions of Section 4.1 and use their

sample analogues to construct a GMM objective function which should be minimised with

respect to θ ∈ Θ:

Q(θ) = D(θ)′AD(θ), (F.1)

where

D(θ) :=


1
|J |
∑

m∈M
∑

j∈Jm [τj,m(X⊕m,W
⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,1(X⊕m,W

⊕
m)]

1
|J |
∑

m∈M
∑

j∈Jm [τj,m(X⊕m,W
⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,2(X⊕m,W

⊕
m)]

...
1
|J |
∑

m∈M
∑

j∈Jm [τj,m(X⊕m,W
⊕
m ,MSm, s

⊕
m, P

⊕
m , G; θ)× zj,m,L(X⊕m,W

⊕
m)]

 ,

J := ∪m∈MJm is the set of all offered products, and A is an appropriate 2L×2L weighting

matrix. In particular, A is computed via the usual two-step procedure: first, we estimate

the parameters using the optimal weighting matrix under conditional homoskedasticity;

second, we use the obtained estimates to construct the optimal weighting matrix under

conditional heteroskedasticity and re-estimate the parameters.

Note that we estimate the demand and supply sides jointly. We could also estimate the

demand and supply sides separately by following a two-step procedure: first estimating

the demand parameters; then using these estimates to calculate the mark-ups; finally

regressing the resulting marginal costs on the observed marginal cost shifts to obtain the

supply parameters. We have chosen to estimate the demand and supply sides together

because it allows us to take into account the potential correlation between the demand

and supply moments and thus obtain more precise estimates, as discussed in Berry et al.

(1995). Moreover, since we have a computationally “light” demand specification, the

additional cost of estimating the demand and supply sides jointly is negligible.
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G Inference on the fixed cost parameters

G.1 Writing (21) as a linear optimisation problem with expo-

nential cone constraints

In what follows, we show that (21) is a linear optimisation problem with exponential cone

constraints. First, we simplify the notation of (21) and write it as

δ(q,ΓαI ) := sup
γ∈Γ

q>γ,

s.t.
R∑
r=1

fα(brγ − ar)− R log(2)/α ≤ 0,
(G.1)

where br stands for E(Zr,mBm) and ar for E(Zr,mAm). Both quantities can be estimated

consistently from their empirical analogue. Second, observe that

R∑
r=1

fα(brγ − ar)− R log(2)/α ≤ 0 (G.2)

⇔ log(1 + exp(α(brγ − ar))) ≤ tr for r = 1, . . . ,R and
R∑
r=1

tr ≤ R log 2 (G.3)

⇔ exp(−tr) + exp(−tr + α(brγ − ar)) ≤ 1 for r = 1, . . . ,R and
R∑
r=1

tr ≤ R log 2 (G.4)

Therefore, (G.1) is equivalent to

max q>γ +
R∑
r=1

0.tr + 0.ur + 0.vr,

under the constraints

R∑
r=1

tr ≤ R log 2,

ur + vr ≤ 1, r = 1, . . . ,R,

(vr, 1,−tr) ∈ Kexp r = 1, . . . ,R,

(ur, 1, α(brγ − ar)− tr) ∈ Kexp r = 1, . . . ,R.

The exponential cone Kexp is a convex subset of R3 such that

Kexp = {(x1, x2, x3) : x1 ≥ x2 exp(x3/x2);x2 > 0} ∪ {(x1, 0, x3), x1 ≥ 0, x3 ≥ 0}.
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The constraints above ensure, in particular, that for any r, vr ≥ exp(−tr) and ur ≥
exp(−tr + α(brγ − ar)), and, therefore, ensure (G.4).

See https://docs.mosek.com/modeling-cookbook/expo.html#softplus-function

for further details.

G.2 Constructing a confidence interval for a component of γ

Suppose we want to construct a confidence interval for a specific linear combination of

components of γ, c>γ. Let q = c/‖c‖. By Theorem 2,

√
M
(
δ̂(q; ΓαI )− δ(q; ΓαI )

)
d−→

M→∞
Zα(q).

The optimisation routine detailed in Section G.1 gives us the unique point, γq, which

achieves the maximum of c>γ on Γ̂αI . Let λq be the Lagrange multiplier solving

λq∇gα(γq) = q,

where

∇gα(γq) =
R∑
r=1

br
exp

(
α
[
b>r γ − ar

])
1 + exp (α [b>r γ − ar])

.

Let Wr(γq) be a random normal variable with variance equal to the asymptotic variance

of 1
M

∑M
m=1(Zr,mB

>
mγq − Zr,mAm). In turn, we can compute the variance of Zα(q), which

is the variance of a centered normal random variable. We denote it vα(q). The quantity

c>γq + ‖c‖n1−β
√
vα(q),

is the upper bound of the 1 − β confidence interval for c>γ, where n1−β is the 1 − β

quantile of the standard normal distribution.

Similarly, let −q = −c/‖c‖ and γ−q be the point which achieves the maximum of

−c>γ on Γ̂αI . Let λ−q be the Lagrange multiplier solving

λ−q∇gα(γ−q) = −q.

As above, we can compute the variance of Zα(−q) and denote it vα(−q). The quantity

c>γ−q − ‖c‖n1−β
√
vα(−q),

is the lower bound of the 1− β confidence interval for c>γ.

Note that, following Stoye (2009), we can adapt the choice of the quantile to handle

near to point-identified cases.
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G.3 Drawing points from the confidence region for γ

In this section, we outline the steps to draw points from the confidence region for the

true value γ0 in order to run our counterfactual analysis.

1. We look for an interior point γc in Γ̂αI . This is known in the convex optimization

literature as the Chebyshev center of a polyhedron (Boyd and Vandenberghe, 2004,

page 148). Interestingly, it can be solved by linear programming:

max
r≥0

r,

s.t.
1

M

M∑
m=1

(−Zr,mB>mγ + Zr,mAm) + r‖ 1

M

M∑
m=1

Zr,mBm‖2 ≤ 0,

r = 1, . . . ,R.

2. Draw a random direction q on the unit sphere and find the frontier point γq = γc+rqq

of Γ̂αI (rq ≥ 0). Again, this is a linear program.

3. Calculate the outer normal vector of Γ̂αI at γq. This is the direction q′ such that

δ(q′, Γ̂αI ) = q′>γq. It can be done analytically by calculating the gradient of gα(·) at

γq.

4. Calculate the variance Vα(q′) of Zα(q′) using Theorem 2.

5. The point fq = γq+
√
Vα(q′)n1−βq

′ is a frontier point of the (conservative) confidence

region CR1−β(γ0) (drawn from γq in direction q′).

6. Draw a norm l uniformly on [0, 1].

7. Pick the point γc + lfq which belongs to CR1−β(γ0).

Figure G.1 illustrates the sequence.

H Empirical application

H.1 Data

Table H.1 lists the airlines’ hubs. Table H.2 reports the airlines belonging to the groups

LCC and Other.
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Γ̂αI

∂Γ̂αI

∂CR1−β(γ0)

γc•
q

γq•
q′ γq + 0.8fq•

fq•

Figure G.1: Drawing from the confidence region

AA DL UA US WN

Dallas Atlanta Washington DC Charlotte Washington DC
New York Cincinnati Denver Washington DC Denver
Los Angeles Detroit Houston Philadelphia Houston
Miami New York New York Phoenix Las Vegas
Chicago Memphis Los Angeles Chicago

Minneapolis-Saint Paul Chicago Phoenix
Salt Lake City San Francisco

Table H.1: Hubs of the legacy carriers and focus cities of Southwest Airlines in 2011.

LCC Other

Frontier Airlines AirTran Airways
Alaska Airlines USA3000 Airlines
Spirit Airlines
Jetblue Airlines
Virgin America
Sun County Airlines
Allegiant Air

Table H.2: Airlines in the categories LLC and Other.
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H.2 Instruments

Table H.3 lists the instruments we use in the estimation of the fixed cost parameters.

Table H.4 lists the instruments we use in the estimation of the demand and supply

parameters.

Table H.3: First-stage instruments.

Zr,(−ab),f = 1 if
All firms {a, b} is not a hub market and has been continuously served since 1979 Q1
AA {a, b} is a hub market with size above 6 million
DL {a, b} is a hub market with size above 6 million
UA {a, b} is a hub market with size above 6 million
US {a, b} is a hub market with size above 5 million
WL {a, b} is a hub market with size above 6 million

Zr,(+ab),f = 1 if
All firms {a, b} is not a hub market and a competitor has a hub at a or b
AA {a} is a hub and {b} is closer to at least 2 other AA hubs
DL {a} is a capacity constrained hub and {b} is closer to all other DL hubs
UA {a} is a hub and {b} is closer to at least 2 other UA hubs
US {a} is a capacity constrained hub and {b} is closer to all other US hubs
WL {a} is a capacity constrained hub and {b} is closer to all other WN hubs

Note: Capacity constrained airports are defined to be airports in need of capacity improvements
according to the Federal Aviation Administration’s FACT3 report. Note that this definition is not
equivalent to an airport being slot constrained.

Table H.4: Second-stage instruments.

Number of firms present in the market
Number of itineraries offered in the market
Number of products offered in the market
Indicator for destination being a hub
Indicator for the market being a monopoly
Number of rival firms offering direct flights in the market
Square of the number of rival firms offering direct flights in the market

H.3 Results from demand and supply

Table H.5 shows the estimated variable profits, prices, marginal costs, and markups at the

firm level. For each airline, the first, second, and third rows contain quantities averaged

over all products, direct flights and one-stop flights respectively. The fourth and fifth rows

contain quantities averaged over direct flights where at least one of the endpoints is a

hub, and direct flights where no endpoint is a hub. We can see that airlines charge higher

markups on direct flights compared to one-stop flights, which is in line with the fact that

14



consumers prefer to take direct flights (see “Indirect” in Table 2, demand panel). The

legacy carriers charge higher markups on direct flights where at least one of the endpoints

is a hub than on direct flights where no endpoint is a hub, suggesting the existence of

a hub premium. This hub premium may be due to the fact that consumers value flying

from dense hubs (see “Nonstop Origin” in Table 2, demand panel) or to fixed costs due

to congestion effects at hubs (see Table 4). While American Airlines, US Airways and

Southwest Airlines have lower marginal costs for direct flights, the opposite is true for

Delta and United Airlines.4 The marginal cost of Southwest Airlines is lower than the

marginal cost of the legacy carriers. For direct flights, the difference is quite substantial.

For one-stop flights, Southwest Airlines’ advantage is small, consistent with the fact that

Southwest Airlines uses focus cities rather than hubs. Therefore, the marginal cost savings

of offering one-stop flights (see “Connections” and “Indirect” in Table 2, Supply panel)

may be less pronounced as not all the features of traditional hubs are used.

H.4 Estimated shares of the variable costs over the operating

costs

We compute the estimated share of the variable costs over the operating costs. The

former are obtained as marginal costs times number of passengers. The latter are defined

as the sum of the variable costs and fixed costs, without considering the congestion costs.

Table H.6 reports this share for each airline based on our results. We compare such

shares with estimates from the FAA for 2018 based on administrative data (Table H.7)

and observe similar orders of magnitude.

I Counterfactuals

I.1 Descriptions of the counterfactual algorithm

The possibility of multiple PSNE networks raises the question of how to obtain counter-

factuals when airlines are allowed to reoptimise their networks and prices. Although the

data tell us which equilibrium was played in the past, they do not tell us which equilib-

rium will be chosen by the players once we change the environment. Previous literature

has suggested several ways of solving this problem. For example, the analyst could enu-

merate all possible equilibria and report some summary measures of the resulting range of

counterfactuals (Eizenberg, 2014). Alternatively, the analyst could implement a learning

algorithm and use it to select a probability distribution of possible equilibria (Lee and

4Note that the fact that American Airlines, US Airways and Southwest Airlines have lower marginal
costs on direct flights does not contradict the negative sign of the coefficient on “Connections” in Table
2. In fact, recall that the results in Table 2 should be interpreted ceteris paribus. Instead, the results in
Table H.5 are obtained by averaging over all itineraries, including those with different characteristics.
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Table H.5: Profits by firms.

Profits (100k) Price Marginal cost Markup Lerner Index

AA
All 1.78 453.36 335.20 118.16 0.28
Direct 13.77 402.37 277.42 124.94 0.32
One-stop 0.39 459.26 341.89 117.38 0.27
Direct, hub endpoint 15.06 402.75 276.66 126.09 0.33
Direct, non-hub endpoints 2.00 398.87 284.48 114.40 0.30

DL
All 1.41 436.45 310.40 126.05 0.31
Direct 12.31 463.26 321.03 142.23 0.33
One-stop 0.33 433.80 309.35 124.45 0.31
Direct, hub endpoint 13.49 482.67 336.83 145.84 0.32
Direct, non-hub endpoints 4.47 334.75 216.44 118.31 0.38

UA
All 1.25 445.56 328.43 117.13 0.28
Direct 9.17 458.50 334.97 123.53 0.29
One-stop 0.20 443.85 327.56 116.28 0.28
Direct, hub endpoint 11.03 456.82 332.24 124.58 0.29
Direct, non-hub endpoints 2.17 464.88 345.33 119.55 0.29

US
All 1.30 453.43 336.77 116.67 0.27
Direct 8.99 407.34 275.17 132.17 0.35
One-stop 0.35 459.10 344.34 114.76 0.26
Direct, hub endpoint 10.42 418.96 282.96 136.00 0.35
Direct, non-hub endpoints 3.95 366.22 247.58 118.64 0.36

WN
All 2.79 419.43 299.51 119.92 0.31
Direct 12.09 365.14 237.09 128.05 0.38
One-stop 0.23 434.40 316.73 117.67 0.29
Direct, hub endpoint 16.49 362.34 233.95 128.39 0.38
Direct, non-hub endpoints 8.88 367.19 239.39 127.80 0.38

Note: Quantities are in USD.

Table H.6: Estimated shares of the variable costs over the operating costs.

Min. 1st Qu. Median Mean 3rd Qu. Max.

AA 80.5% 81.5% 82.4% 82.5% 83.7% 84.8%
DL 78.2% 79.3% 80.2% 80.4% 81.7% 82.9%
UA 75.0% 76.2% 77.2% 77.4% 78.8% 80.1%
US 73.9% 75.1% 76.2% 76.4% 77.9% 79.2%
WN 66.3% 67.7% 69.0% 69.3% 71.0% 72.6%
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Table H.7: Passenger Air Carriers Filing Schedule P-5.2 Operating and Fixed Costs per
Block Hours.

Cost per Block Hour
Aircraft Category Fuel Mainte- Crew Total Deprec. Rentals Other Total Share

and Oil nance Variable Fixed Variable

Wide-body more
than 300 seats

$5,411 $1,331 $2,356 $9,097 $845 $406 $5 $1,254 87.9%

Wide-body 300
seats and below

$4,080 $1,289 $1,857 $7,227 $685 $366 $8 $1,058 87.2%

Narrow-body more
than 160 seats

$2,054 $718 $1,152 $3,925 $355 $217 $10 $582 87.1%

Narrow-body 160
seats and below

$1,741 $737 $1,034 $3,512 $306 $215 $12 $533 86.8%

RJ more than 60
seats

$115 $431 $444 $991 $131 $252 $14 $397 71.4%

RJ 60 seats and be-
low

$92 $479 $470 $1,041 $58 $227 $8 $293 78.0%

Turboprop more
than 60 seats

$0 $880 $360 $1,241 $439 $103 $2 $544 69.5%

All Aircraft $1,681 $727 $1,012 $3,420 $314 $239 $11 $564 85.8%

Source: FAA, https://www.faa.gov/regulations_policies/policy_guidance/benefit_cost,
Section 4 of the Benefit-Cost analysis, Table 4-6.
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Pakes, 2009; Wollmann, 2018). The first approach is not computationally feasible in our

setting, due to the large number of markets and the presence of entry spillovers. There-

fore, we follow the second approach. We fix an order of markets and firms. For a given

value of the parameters, the first firm in the first market best responds to its competitors

in terms of entry and pricing decisions. The second firm similarly best responds, taking

into account the best response of the first firm. The third company also best responds,

taking into account the best responses of the first and second companies. The algorithm

cycles through the firms and markets until no airline wishes to deviate. The procedure is

repeated for 50 draws of parameter values from the estimated identified set of first-stage

parameters. For each parameter value, we consider four market orderings. In the first

ordering, we rank the markets according to which hub is involved, whether the market is

served by the merged firm, the size of the merged firm’s operations at the endpoints, and

the market size(ordering A). In the second ordering, we reverse this ranking (ordering

B). In the third and fourth orderings, werank markets randomly (orderings C and D).

For each of the four market orderings, we consider two firm orderings: AA-DL-UA-WL

(ordering 1) and the reverse (ordering 2). This procedure generates a distribution of

possible equilibria over 400 (i.e., 50× 4× 2) counterfactual runs. In the tables of Section

8.2, we report the minimum, maximum, and median changes in the relevant outcomes

under such distribution.

The remainder of the section illustrates the details of the counterfactual algorithm.

In particular, we explain the algorithm implemented to simulate the merger under the

Networks vary - w/o remedies scenario, given an order of markets and firms and a value

of the parameters. The algorithm is structured in the following steps:

1. Latent variables. We determine the realisations of the latent variables that are

needed to evaluate the airlines’ profits. In particular, from the vector of second-stage

estimates, θ̂, we compute the second-stage shocks for each product offered by the air-

lines before the merger, via BLP inversion. For each airline f , we compute the mean

and variance of the second-stage shocks and denote them by µf and Σf , respectively.

When computing µf and Σf for the merged airline, we consider the second-stage shocks

associated with all the products offered by the merging firms before the merger. If both

American Airlines and US Airways offer a given itinerary before the merger, then we take

the mean value of the second-stage shocks of the two pre-merger products. For each po-

tential product of every airline f , we take 100 random draws from a normal distribution

with mean µf and variance Σf . We store all such draws in a matrix Ξ. Further, for each

market {a, b} and airline f , we impute the fixed cost shock ηab,f as explained in Section

I.2.

2. Initial state. At the start, all firms except the merged entity are assigned their pre-

merger networks and products. The merged entity is assigned the network resulting from

combining the pre-merger networks of American Airlines and US Airways. The products
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initially offered by the merged entity and their observed characteristics are constructed

from such merged network. We denote by G := (G1, . . . , GN-1) the initial networks of

the carriers. We let the firms play the simultaneous pricing game described in Section

3.1, for each draw of the second-stage shocks stored in the matrix Ξ. We save the initial

equilibrium prices in a matrix P .

3. Iterations. We take the first firm f in the first market {a, b} and let it play its best

response as follows. Suppose, for instance, that the initial network Gf is characterised by

Gab,f = 0. First, we compute airline f ’s expected variable profits under (G(+ab),f , G−f ).

To do so, we update the list of products offered by firm f , by adding direct flights

between cities a and b. Further, note that setting Gab,f = 1 creates a “domino effect” in

neighbouring markets, due to the possibility for airline f to offer one-stop flights and the

presence of spillovers in entry across markets. Hence, if a is one of firm f ’s hubs, then we

add one-stop flights, via a, between b and all cities d such that Gda,f = 1. Similarly, if b

is one of firm f ’s hubs, then we add one-stop flights, via b, between a and all cities d such

that Gdb,f = 1. We update the matrices of product covariates by including the observed

demand and marginal cost shifters of the new products. We also update the product

covariates (namely, “Nonstop Origin” and “Connections”) of the pre-existing products

that are affected by the new products. LetMab,f be the list of markets containing either

new products or products with modified covariates. For each of these products in every

market m ∈ Mab,f , we let airline f find the best-response price, while holding the other

prices in P fixed, for every draw of the second-stage shocks stored in the matrix Ξ. We

compute airline f ’s variable profits, average across draws, and get the simulated airline

f ’s expected variable profits, which we denote by
∑

m∈Mab,f
Πe
f,m(G(+ab),f , G−f ; θ̂). Next,

we implement a similar procedure to compute airline f ’s expected variable profits in

each markets m ∈ Mab,f under G, which we denote by
∑

m∈Mab,f
Πe
f,m(Gf , G−f ; θ̂). We

take the difference between airline f ’s fixed costs under (G(+ab),f , G−f ) and G, which is

FCf (G(+ab),f , ηf ; γ̂) − FCf (Gf , ηf ; γ̂) = γ̂2,f∆Q(+ab),f + γ̂1,f + ηab,f , where γ̂ is the value

of the fixed costs parameters drawn from the estimated identified set and ηab,f is the

imputed value of the fixed cost shock. Lastly, we compute:

∑
m∈Mab,f

Πe
f,m(G(+ab),f , G−f ; θ̂)−

∑
m∈Mab,f

Πe
f,m(Gf , G−f ; θ̂)− (γ̂2,f∆Q(+ab),f + γ̂1,f + ηab,f ).

(I.1)

If (I.1) is positive (negative), then the best-response entry of airline f is Gab,f = 1

(Gab,f = 0). We update G and P and move to the second firm in the first market. We

let this firm best respond, while taking into account the first firm’s best response. The

third firm similarly best responds, while taking into account the first and second firms’

best responses, and so on.

4. Stop. We cycle through the firms and markets. When no firm wants to deviate in

none of the markets, we stop the procedure. In practice, we have obtained convergence
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in all the cases considered.

Due to computational costs, the above algorithm does not consider all possible entry

deviations by each firm. In fact, it imposes that each firm considers adding/deleting

direct flights in one market at a time. Nevertheless, at the rest point of the procedure, the

necessary conditions for PSNE that are used in the estimation of the fixed cost parameters

hold. Hence, the algorithm provides an equilibrium that is internally consistent with our

model. Similar restrictions on the set of admissible deviations are assumed by Eizenberg

(2014) and Wollmann (2018).5

We also adopt the above algorithm in the merger simulation for the Networks vary

- w/ remedies and 6. Networks vary - PHX dehubbed scenarios. However, in scenario

Networks vary - w/ remedies, we do not allow the merged entity to exit the markets out

of Charlotte, New York, Los Angeles, Miami, Chicago, Philadelphia, and Phoenix that

were served before the merger by American Airlines or US Airways. In scenario Networks

vary - PHX dehubbed we delete all flights of the merged entity between Phoenix and

non-hub cities and do not allow the merged entity to re-enter those markets.

I.2 Imputation of the fixed cost shocks in the counterfactuals

To perform the counterfactuals, we need a measure of the fixed cost shocks. Different

approaches have been taken in the literature. For example, Wollmann (2018) draws the

fixed cost shocks from a normal distribution with zero mean and variance equal to a

fraction of the variance of the systematic fixed costs. Kuehn (2018) finds, for each mar-

ket, the range of realisations of the fixed cost shocks generating the observed entry/exit

patterns and takes the midpoint. We use a procedure that is similar to Kuehn (2018).

We repeat the steps below for each value of γ drawn from the estimated identified set at

which we run the counterfactual algorithm. When we observe airline f serving market

{a, b} with direct flights (i.e., Gab,f = 1), we infer that this choice must be profitable,

giving us an upper bound for ηab,f . In fact, let Πe
f (Gf , G−f ; θ) − Πe

f (G(−ab),f , G−f ; θ) −
γ2,f∆Q(−ab),f−γ1,f−ηab,f be the difference between the factual profits of airline f and the

profits that airline f would get if deviating to Gab,f = 0. By best-response arguments, it

must be that Πe
f (Gf , G−f ; θ)−Πe

f (G(−ab),f , G−f ; θ)− γ2,f∆Q(−ab),f − γ1,f − ηab,f ≥ 0, i.e.,

ηab,f ≤ Πe
f (Gf , G−f ; θ)−Πe

f (G(−ab),f , G−f ; θ)−γ2,f∆Q(−ab),f−γ1,f . Thus, Πe
f (Gf , G−f ; θ)−

Πe
f (G(−ab),f , G−f ; θ)− γ2,f∆Q(−ab),f − γ1,f represents an upper bound for ηab,f . Next, we

collect all the markets where airline f does not enter, that are hub markets (non-hub

markets) if market {a, b} is a hub market (is not a hub market) for airline f , and that

5The networks at the rest point of our algorithm constitute a pairwise stable outcome, in the sense
illustrated by Section B. In fact, our algorithm resembles the tâtonnement dynamics discussed by Jackson
and Watts (2002), in which agents form or destroy individual connections, taking the remaining network
as given and not anticipating future adjustments. Jackson and Watts (2002) show that pairwise stable
networks can be achieved by tâtonnement dynamics.
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Table I.1: Comparison of merger prediction with data from 2015-2019.

2011 Prediction 2015 2016 2017 2018 2019 Mean 15-19

Segments: AA/US 430 498 445 465 464 478 491 468.6
[435, 546]

Segments: Other major airlines 736 689 669 678 698 681 678 680.8
[606, 710]

face similar congestion costs. These markets give us a vector of lower bounds for ηab,f .

We take the 2.5th percentile of these lower bounds and use it as a lower bound for ηab,f .

Lastly, we set ηab,f equal to the mid-point between the lower and upper bounds. We im-

plement a similar procedure to determine the fixed cost shocks for the markets that are

not served by airline f in the data. However, instead of the 2.5th percentile, in that case

we take the 97.5th percentile to obtain an upper bound. When simulating the merger,

the merged entity gets the mean value of the fixed cost shocks imputed to the merging

firms by following the above procedure.

I.3 Comparison with post-merger data

Table I.1 shows a comparison of our Networks vary - w/ remedies scenario with post-

merger data on the markets served with direct flights by American Airlines and its com-

petitors before and after the merger out of American Airlines and US Airways’ hubs.

Note that such a comparison is always fraught with difficulties because other changes

occurred at the same time the merger was consummated, such as changes in preferences,

costs (e.g., a significant drop in the price of kerosene in the 2010s), and other changes

in market structure. See, for instance, Bontemps et al. (2022). Nevertheless, our model

predicts relatively well the actual entry-exit dynamics. In particular, we correctly predict

the post-merger expansion of American Airlines’ network and reduction of competitors’

networks. In particular, towards 2019, the observed number of markets served with di-

rect flights closely matches the median prediction of our scenarios. Further, the observed

number of markets served with direct flights lies within the lower-and upper bounds of

our predictions in every year considered.
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I.4 Additional tables

Table I.2 shows the hub-level changes in the number of direct flights offered by American

Airlines and the other major airlines. The column Av. presence reports the average

number of main carriers present across all possible markets out of a given hub. Table

I.3 reports the percentage change in prices, marginal costs, and markups of American

Airlines and the other major airlines. It distinguishes between direct flights and one-stop

flights.

Table I.2: Changes in direct flights offered in the hub markets of AA and US.

Before Merger

w/o remedies w/ remedies PHX dehubbed

AA/US Others Av. presence AA/US Others Av. presence AA/US Others Av. presence AA/US Others Av. presence

AA hubs
DFW 68 55 1.6 69 57 1.52 68 57 1.52 68 57 1.52

[66, 73] [55, 57] [1.5, 1.59] [66, 73] [55, 57] [1.5, 1.59] [67, 74] [54, 57] [1.49, 1.6]
LAX 28 90 1.51 30 90 1.47 30 90 1.48 34 90 1.52

[21, 33] [87, 91] [1.36, 1.52] [28, 33] [87, 91] [1.44, 1.52] [22, 35] [88, 91] [1.38, 1.56]
ORD 59 129 2.35 63 105 2.05 63 110 2.1 62 108 2.09

[56, 70] [73, 116] [1.68, 2.21] [60, 71] [73, 115] [1.73, 2.23] [53, 69] [75, 118] [1.71, 2.2]
MIA 40 51 1.17 25 52 0.94 42 52 1.13 25 52 0.94

[15, 44] [50, 52] [0.8, 1.16] [40, 47] [50, 52] [1.11, 1.21] [14, 46] [50, 52] [0.79, 1.18]
JFK 41 113 2 58 95 1.85 56 96 1.88 61 97 1.85

[29, 81] [49, 113] [1.55, 2.17] [43, 81] [49, 106] [1.59, 2.16] [29, 81] [51, 112] [1.57, 2.16]

US hubs
CLT 61 41 1.29 64 41 1.28 65 41 1.29 64 41 1.28

[43, 69] [39, 42] [1.02, 1.35] [61, 69] [39, 42] [1.23, 1.35] [43, 68] [39, 42] [1.04, 1.33]
PHX 41 74 1.49 40 66 1.29 42 65 1.3 8 68 0.93

[23, 43] [61, 69] [1.1, 1.35] [41, 43] [59, 68] [1.22, 1.35] [8, 8] [63, 70] [0.87, 0.95]
DCA 40 130 2.16 81 127 2.52 75 128 2.46 81 127 2.52

[34, 82] [123, 133] [2, 2.6] [28, 82] [124, 133] [1.91, 2.61] [32, 82] [124, 133] [1.98, 2.59]
PHL 52 53 1.33 54 56 1.36 56 55 1.37 55 56 1.37

[25, 67] [54, 60] [1.04, 1.52] [52, 67] [54, 56] [1.32, 1.52] [28, 66] [54, 61] [1.07, 1.49]

Total
Total 430 736 1.66 491 686 1.6 498 689 1.61 457 693 1.56

[348, 531] [607, 720] [1.43, 1.65] [435, 546] [606, 710] [1.54, 1.67] [335, 497] [612, 721] [1.41, 1.62]

Note: Median outcomes are reported, with minimum and maximum outcome in brackets.

I.5 Inference on counterfactuals

In this section, we report the confidence intervals for the counterfactuals presented in

Section 8.2 of the main paper. To construct these confidence intervals, we run the coun-

terfactual algorithm discussed in Section I.1 at 50 draws of parameter values from the

95% confidence region for γ. Section G.3 explains how we take such draws. In particular,

Table I.4 reports the confidence intervals for Table 9, Table I.5 reports the confidence

intervals for Table 10.
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Table I.3: Percentage change in prices, marginal cost, and markups.

Before Merger

w/o remedies w/ remedies PHX dehubbed

AA/US: Direct
Price 406.24 -4.71 -4.68 -4.72

[-6.73, -3.67] [-5.36, -3.53] [-6.71, -3.60]
Marginal cost 276.70 -10.23 -10.05 -10.06

[-12.62, -9.66] [-10.87, -9.43] [-12.52, -9.28]
Markup 129.54 +7.39 +7.04 +7.30

[+4.6, +9.41] [+5.64, +9.39] [+4.22, +9.23]

Others: Direct
Price 413.19 +0.56 +0.55 +0.78

[-0.25, +2.50] [-0.18, +1.43] [-0.14, +2.65]
Marginal cost 291.60 +1.39 +1.35 +1.38

[+0.30, +3.40] [+0.51, +2.26] [+0.20, +3.23]
Markup 121.59 -1.44 -1.43 -0.64

[-1.80, +1.16] [-1.97, -0.21] [-1.12, +1.50]

AA/US: One-stop
Price 466.39 -5.69 -5.42 -6.19

[-8.15, -5.19] [-5.90, -4.74] [-7.62, -5.60]
Marginal cost 351.28 -12.67 -12.43 -12.85

[-14.08, -11.75] [-12.91, -10.49] [-13.31, -10.33]
Markup 115.11 +15.27 +15.44 +13.63

[+8.22, +17.82] [+12.01, +18.52] [+8.07, +16.62]

Others: One-stop
Price 416.12 +4.05 +3.97 +4.13

[+3.42, +4.97] [+3.43, +4.52] [+3.55, +4.98]
Marginal cost 301.18 +6.00 +5.94 +6.03

[+5.35, +6.63] [+5.41, +6.49] [+5.40, +6.58]
Markup 114.94 -1.25 -1.31 -0.84

[-1.81, +0.99] [-2.00, -0.44] [-1.49, +1.07]

Note: Percentage changes with respect to the pre-merger scenario are reported.

Table I.4: Percentage change in consumer surplus across different scenarios.

Networks fixed Networks vary

w/o remedies w/ remedies PHX dehubbed

Total consumer surplus +0.08 +0.77 +0.91 -0.67
[-0.47, +3.40] [-8.92, +3.47] [-3.92, +3.84] [-10.01, +1.79]

New markets 0 45.15 45.02 42.87
[30.77, 52.29] [29.47, 53.37] [23.58, 53.02]

Old markets +0.08 -5.28 -5.12 -4.67
[-0.47, +3.40] [-10.67, -3.97] [-8.18, -3.94] [-11.23, -3.32]

Note: Consumer surplus is computed using the log-sum formula and it is in USD 1 million
up to constant of integration. Percentage changes with respect to the pre-merger scenario
are reported.
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Table I.5: Outcomes across different scenarios

Before Merger

Networks fixed Networks vary

w/o remedies w/ remedies PHX dehubbed

Total 2807.06 +0.08 +0.77 +0.91 -0.67
[-0.47, +3.40] [-8.92, +3.47] [-3.92, +3.84] [-10.01, +1.79]

Mean 4.09 +0.08 -0.73 -0.44 -1.96
[-0.47, +3.40] [-9.58, +1.83] [-4.76, +2.20] [-10.67, +0.34]

Markups: AA/US 119.20 +7.34 +12.86 +12.96 +12.36
[+5.98, +8.64] [+7.44, +16.30] [+10.05, +16.37] [+6.41, +15.50]

Markups: Other major airlines 116.22 -0.45 -1.30 -1.37 -0.93
[-0.68, +0.07] [-2.11, +1.10] [-2.22, -0.40] [-1.58, +1.17]

Segments: AA/US 430 430 493.5 500 467
[346, 551] [434, 559] [330, 514]

Segments: Other major airlines 736 736 686 688.5 691
[594, 717] [596, 710] [613, 719]

Note: Consumer surplus is computed using the log-sum formula and it is in USD 1 million up to constant of
integration. Percentage changes with respect to the pre-merger scenario are reported for total consumer surplus,
mean consumer surplus, and markups.
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